首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系: 问平均内径μ取何值时,销售一个零件的平均
admin
2019-11-25
54
问题
设由自动生产线加工的某种零件的内径X(毫米)服从正态分布N(μ,1),内径小于10或大于12为不合格品,其余为合格产品.销售合格品获利,销售不合格产品亏损,已知销售利润T(单位:元)与销售零件的内径X有如下关系:
问平均内径μ取何值时,销售一个零件的平均利润最大?
选项
答案
E(T)=-1×P(X<10)+20×P(10≤X≤12)-5P(X>12) =-[*](10-μ)+20[[*](12-μ)-[*](10-μ)]-5[1-[*](12-μ)] =25[*](12-μ)-21[*](10-μ)-5, 令[*]E(X)=21[*](10-μ)-25[*](12-μ)=0,即[*]=0, 解得μ=11-[*]≈10.9,所以当μ≈10.9时,销售一个零件的平均利润最大.
解析
转载请注明原文地址:https://jikaoti.com/ti/MXiRFFFM
0
考研数学三
相关试题推荐
设实二次型f(x1,x2,x3)=xTAx经正交变换化成的标准形为f=2y12-y22一y32,A*是A的伴随矩阵,且向量α=[1,1,一1]T满足A*α=α,则二次型f(x1,x2,x3)=______.
设f(x)在x=0处连续且,求f(0)并讨论f(x)在x=0处是否可导.若可导,请求出f’(0).
设f(x),g(x)在[a,b]上二阶可导,且f(a)=f(b)=g(a)=0.证明:存在ξ∈(a,b),使f"(ξ)g(ξ)+2f’(ξ)g’(ξ)+f(ξ)g"(ξ)=0.
设f(x)在x0处n阶可导,且f(m)(x0)=0(m=1,2,…,n一1),f(n)(x0)≠0(n>2).证明:当n为奇数时,(x0,f(x0))为拐点.
设函数y(x)(x≥0)二阶可导且y’(x)>0,y(0)=1.过曲线y=y(x)上任意一点P(x,y)作该曲线的切线及x轴的垂线,上述两直线与x轴所围成的三角形的面积记为S1,区间[0,x]上以y=y(x)为曲边的曲边梯形面积记为S2,并设2S1一S2
设n维行向量矩阵A=E一αTα,B=E+2αTα,则AB=()
求微分方程(3x2+2xy—y2)dx+(x2一2xy)dy=0的通解.
微分方程xdy—ydx=ydy的通解是______.
设A,B为同阶方阵。当A,B均为实对称矩阵时,证明(I)的逆命题成立。
求下列一阶常系数线性差分方程的通解:4yt+1+16yt=20;
随机试题
辛亥革命失败的原因及教训。
计算机采用二进制与________无关。
A.清宫术B.子宫切除术C.患侧附件切除术D.化疗E.放疗
有关头颅正位摄影的叙述,错误的是
浅Ⅱ°和深Ⅱ°烧伤的共同特点是
钢结构焊接产生热裂纹的主要原因有()。
股权投资基金选择合适的时机,将其在被投资企业的股权变现,由股权形态转化为具有流动性的现金收益,以实现资本增值,或及时避免和降低损失。这是投资进程中的()环节。
瑶瑶快要结婚了。她走在上班的路上,感到花儿在对她微笑,鸟儿在向她报喜。这种情绪状态是()。
设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ″(ξ)=0.
A、It’satraditionalEuropeanfestival.B、ItfallsonthedaybeforeEaster.C、Thetraditionalcelebrationisdecoratingeggs.D
最新回复
(
0
)