首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
admin
2019-03-23
38
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,—2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β—α
4
),求方程组Bx=3α
1
+5α
2
—α
3
的通解。
选项
答案
由方程组Ax=β的通解表达式可知 R(A)=R(α
1
,α
2
,α
3
,α
4
)=4—1=3, 且 α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+4α
3
=0, 则B=(α
3
,α
2
,α
1
,β—α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,故R(B)=2。 又因为 (α
3
,α
2
,α
1
,β—α
4
)[*]=3α
1
+5α
2
—α
3
, 故知(—1,5,3,0)
T
是方程组Bx=3α
1
+5α
2
—α
3
的一个解。 (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
—2α
2
+α
1
=0, (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
—2α
2
+4α
3
=0, 所以(4,—2,1,0)
T
,(2,—4,0,1)
T
是Bx=0的两个线性无关的解。 故Bx=3α
1
+5α
2
—α
3
的通解为 (—1,5,3,0)
T
+k
1
(4,—2,1,0)
T
+k
2
(2,—4,0,1)
T
,其中k
1
,k
2
是任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/MSLRFFFM
0
考研数学二
相关试题推荐
设3阶矩阵A=,A-1XA=XA+2A,求X.
设A=,(1)证明当n>1时An=An-2+A2-E.(2)求An.
n维向量α=(a,0,...,0,a)T,a<0,A=E-ααT,A-1=E+α-1ααT,求a.
设齐次方程组(I)有一个基础解系β1=(b11,b12,…,b1×2n)T,β2=(b21,b22,…,b2×2n)T,…,βn=(bn1,bn2,…,bn×2n)T.证明A的行向量组是齐次方程组(Ⅱ)的通解.
设①计算行列式|A|.②实数a为什么值时方程组AX=β有无穷多解?在此时求通解.
已知齐次方程组同解,求a,b,c.
设α是n维非零列向量,记A=E-ααT.证明αTα≠1A可逆.
设A是正定矩阵,B是实对称矩阵,证明AB相似于对角矩阵.
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫02f(x)dx=f(2)+f(3)。证明存在ξ∈(0,3),使f’’(ξ)=0。
设D由抛物线y=x2,y=4x2及直线y=1所围成.用先x后y的顺序,将I=f(x,y)dxdy化成累次积分.
随机试题
焊条型号中的“Q”表示()。
软组织血管瘤,错误的是
女,22岁,劳力性心悸气促1年,昨晚2时突起呼吸困难,不能平卧,咳吐大量粉红色泡沫痰。查体:唇发绀,心尖区触及舒张期震颤,心尖区闻舒张期隆隆样杂音,第一心音增强,肺部布满大量哮鸣音及湿性啰音。该病人的诊断为
可能加重胃食管反流病患者反流症状的药物有()。
根据《行政复议法》的规定,公民、法人或其他组织对政府工作部门依法设立的派出机构以自己的名义作出的具体行政行为不服的,可申请行政复议。下列机构中,对该行政复议申请有管辖权的有()。
甲企业聘请咨询公司为其做组织咨询。咨询人员收集到企业下列信息并采用变量分析法确定企业领导者的管理幅度,以下信息中有利于企业采用扁平化的组织结构的是()。
《中华人民共和国刑法》第8条规定:“外国人在中华人民共和国领域外对中华人民共和国国家或者公民犯罪,而按本法规定的最低刑为三年以上有期徒刑的,可以适用本法,但是按照犯罪地的法律不受处罚的除外。”关于该条文,下列哪些说法是正确的()
设δ>0,f(x)在(-δ,δ)内恒有f"(x)>0,且|f(x)|≤x2,记则有().
A、Theshowwasveryimpressive.B、Shethoughttherewerenoticketsleft.C、Shethoughttheticketsfortheleftseatsweresold
A、Thespeakerwasaqualifiednurse.B、Mr.Gillespiewasanoptimisticperson.C、Hewhohelpsotherswillfeelhappytoo.D、Sick
最新回复
(
0
)