首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
已知A=(α1,α2,α3,α4)是四阶矩阵,α1,α2,α3,α4是四维列向量,若方程组Ax=β的通解是(1,2,2,1)T+k(1,—2,4,0)T,又B=(α3,α2,α1,β—α4),求方程组Bx=3α1+5α2—α3的通解。
admin
2019-03-23
33
问题
已知A=(α
1
,α
2
,α
3
,α
4
)是四阶矩阵,α
1
,α
2
,α
3
,α
4
是四维列向量,若方程组Ax=β的通解是(1,2,2,1)
T
+k(1,—2,4,0)
T
,又B=(α
3
,α
2
,α
1
,β—α
4
),求方程组Bx=3α
1
+5α
2
—α
3
的通解。
选项
答案
由方程组Ax=β的通解表达式可知 R(A)=R(α
1
,α
2
,α
3
,α
4
)=4—1=3, 且 α
1
+2α
2
+2α
3
+α
4
=β,α
1
—2α
2
+4α
3
=0, 则B=(α
3
,α
2
,α
1
,β—α
4
)=(α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
),且α
1
,α
2
,α
3
线性相关,故R(B)=2。 又因为 (α
3
,α
2
,α
1
,β—α
4
)[*]=3α
1
+5α
2
—α
3
, 故知(—1,5,3,0)
T
是方程组Bx=3α
1
+5α
2
—α
3
的一个解。 (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=4α
3
—2α
2
+α
1
=0, (α
3
,α
2
,α
1
,α
1
+2α
2
+2α
3
)[*]=α
1
—2α
2
+4α
3
=0, 所以(4,—2,1,0)
T
,(2,—4,0,1)
T
是Bx=0的两个线性无关的解。 故Bx=3α
1
+5α
2
—α
3
的通解为 (—1,5,3,0)
T
+k
1
(4,—2,1,0)
T
+k
2
(2,—4,0,1)
T
,其中k
1
,k
2
是任意常数。
解析
转载请注明原文地址:https://jikaoti.com/ti/MSLRFFFM
0
考研数学二
相关试题推荐
设α1=(1,-1,2,4),α2=(0,3,1,2),α3=(3,0,7,14),α4=(1,-2,2,0),α5=(2,1,5,10).①求r(α1,α2,α3,α4,α5).②求一个最大线性无关组,并且把其余向量用它线性表示.
设A是n阶实反对称矩阵,证明E+A可逆.
设A=αβT,其中α和β都是n维列向量,证明对正整数k,Ak=(βTα)k-1A=(tr(A))k-1A.(tr(A)是A的对角线上元素之和,称为A的迹数.)
设α,β都是n维列向量时,证明①αβT的特征值为0,0,…,0,βTα.②如果α不是零向量,则α是αβT的特征向量,特征值为βTα.
已知方程组总有解,则λ应满足_________.
求二元函数z=f(x,y)=x2y(4一x一y)在直线x+y=6,x轴与y轴围成的闭区域D上的最大值与最小值.
求曲线y=+ln(1+ex)的渐近线方程.
给定曲线y=χ2+5χ+4,(Ⅰ)确定b的值,使直线y=-χ+b为曲线的法线;(Ⅱ)求过点(0,3)的切线.
随机试题
TheestablishmentoftheThirdReichinfluencedeventsinAmericanhistorybystartingachainofeventswhichculminatedinwar
利用转变温度法进行焊接接头抗脆性断裂试验时,所用的试样为_____。
()是由基本时间、辅助时间、布置工作场地时间、准备与结束时间、休息和生理需要时间五部分组成的。
记载“肺胀而咳,或左或右不得眠,此痰挟瘀血碍气而病”者,是哪一书
关于中心岛式挖土的说法,正确的是()。
下列选项中属于我国现代企业制度基本特征的有()。
在亚洲金融危机中,中国因为金融市场的开放程度有限而没有受到最严重的冲击。相反,亚洲各国中金融市场开放程度比较高的韩国、印度尼西亚、泰国等都饱受货币贬值、经济衰退之苦。看来,中国的金融市场还是应该自成体系地封闭运行为好。以下各项如果为真,最能削弱上
共产主义者同盟
若函数在x=0处连续,则().
使用命令DECLAREmm(2,3)定义的数组,包含的数组元素(下标变量)的个数为______。
最新回复
(
0
)