首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%. 试求:(Ⅰ)随机检验一箱产品,它能通过验收的
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%. 试求:(Ⅰ)随机检验一箱产品,它能通过验收的
admin
2018-11-23
18
问题
每箱产品有10件,其中次品数从0到2是等可能的,开箱检验时,从中任取一件,如果检验为次品,则认为该箱产品不合格而拒收.由于检验误差,一件正品被误判为次品的概率为2%,一件次品被误判为正品的概率为10%.
试求:(Ⅰ)随机检验一箱产品,它能通过验收的概率p;
(Ⅱ)检验10箱产品通过率不低于90%的概率q.
选项
答案
(Ⅰ)记B=“任取一件产品为正品”,[*]=“任取一件产品为次品”,则A=BA∪[*]A,由题设知P(A|B)=1-0.02=0.98,P(A|[*])=0.1,所以 p=P(A)=P(BA)+P([*]A)=P(B)P(A|B)+P([*])P(A|[*]) =0.98P(B)+[1-P(B)]×0.1=0.1+0.88P(B). 显然P(B)与该箱产品中有几件次品有关,为计算P(B),我们再次应用全概率公式.若记C
i
=“每箱产品含i件次品”(i=0,1,2),则C
0
,C
1
,C
2
是一完备事件组,P(C
i
)=[*],故B=C
0
B∪C
1
B∪C
2
B,且 P(B)=P(C
0
)P(B|C
0
)+P(C
1
)P(B|C
1
)+P(C
2
)P(B|C
2
) =[*]=0.9. 所以p=0.1+0.88×0.9=0.892. (Ⅱ)如果用X表示检验10箱被接收的箱数,则通过率为[*],我们要求的概率q=P{[*]≥0.9}=P{X≥9},其中X是10次检验事件A发生的次数,X~B(10,0.892),故 q=P{X≥9}=P{X=9}+P{X=10}=10×0.892
9
×0.108+0.892
10
≈0.705.
解析
转载请注明原文地址:https://jikaoti.com/ti/MH1RFFFM
0
考研数学一
相关试题推荐
设X1,X2,…,Xn为来自区间[一a,a]上均匀分布的总体X的简单随机样本,则参数a的矩估计量为________.
设D是由x2+y2≤a2,y≥0所确定的上半圆域,则D的形心的y坐标=_________。
从数1,2,3,4中任取一个数,记为X,再从1,…,X中任取一个数,记为Y,则P{Y=2}=____________.
设函数f(x)=在(一∞,+∞)内连续,且,则常数a,b满足
设有向量组(I):α1=(1+a,1,1,1)T,α2=(2,2+a,2,2)T,α3=(3,3,3+a)T.α4=(4,4,4,4+a)T.问a取何值时,(I)线性相关?当(I)线性相关时,求其一个极大无关组,并将其余向量用该极大无关组线性表出.
设向量组(I):α1,α2,…,αr线性无关,且(I)可由(Ⅱ):β1,β2,…,βs线性表示.证明:在(Ⅱ)中至少存在一个向量βj,使得βj,α2,…,αr线性无关.
对事件A,B,已知,则P(A)=_____,P(B)=______=_______
(94年)设相互独立的两个随机变量X与Y具有同一分布律,且X的分布律为则随机变量Z=max{X,Y)的分布律为______.
设X1,X2,…,Xn独立同分布,且Xi(i=1,2,…,n)服从参数为λ的指数分布,则下列各式成立的是()(其中Ф(x)=
随机试题
某商品混凝土公司一次性购进一批散装水泥,按要求见证取样每一批量不得超过()t。
陈白尘的代表作是()
A.胃底部B.胃窦部C.小肠上部D.回肠E.结肠吸收铁的主要部位是
牙支持式义齿适用于()
Excel的数据有()等多种类型。
我国境内的股票价格指数不包括()。
山东寿光市孙家集三元朱村党支部书记王乐义带领农民走农业产业化道路,使三元朱村成为全国闻名的小康村和新农村建设的一面旗帜。王乐义具有强烈的创新精神和致富能力。1989年,他率先试验成功了日光温室蔬菜种植生产技术,并引发了寿光乃至全国的蔬菜“绿色革命”。200
计算机网络是以能够相互共享资源的方式互联起来的【 】系统的集合。
若利用选择查询计算每个职工的工龄,并对结果进行取整操作,标题行显示为工龄,则字段行的设计正确的语句是()。
In1904A.P.GianninibecameaboardmemberofaSanFranciscobank.Hediscoveredthatmostbankscaredonlyforthewealthy,
最新回复
(
0
)