求下列积分: (Ⅰ)设f(x)=∫1xdy,求∫01xf(x)dx; (Ⅱ)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.

admin2018-11-21  20

问题 求下列积分:
    (Ⅰ)设f(x)=∫1xdy,求∫01xf(x)dx;
    (Ⅱ)设函数f(x)在[0,1]连续且∫01f(x)dx=A,求∫01dx∫x1f(x)f(y)dy.

选项

答案(Ⅰ)[*] (Ⅱ)令Ф(x)=∫x1f(y)dy,则Ф’(x)=一f(x),于是 ∫01dx∫x1f(x)f(y)dy=∫01[∫x1f(y)dy]f(x)dx =一∫01Ф(x)dФ(x)=一[*]Ф2(x)|01 =[*]A2

解析 该例中的两个小题均是求形如∫ab[f(x)∫axg(y)dy]dx的积分,它可看作区域D={(x,y)|a≤x≤b,a≤y≤x}上一个二重积分的累次积分,有时通过交换积分次序而求得它的值.作为定积分,若f(x)的原函数易求得F’(x)=f(x),则可由分部积分法得
    ∫ab[f(x)∫axg(y)dy]dx=∫ab[∫axg(y)dy]dF(x)=[F(x)∫axg(y)dy]|ab一∫abF(x)g(x)dx.
若右端易求,则可求得左端的值.
转载请注明原文地址:https://jikaoti.com/ti/Ls2RFFFM
0

最新回复(0)