首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知线性方程组 的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T(i=1,2,3,4,5),试问: (I)α1能否由α2,α3,α4线性表示; (Ⅱ)α4能否由α1,α2,α3线性表示,并说明理由。
已知线性方程组 的通解是(2,1,0,3)T+k(1,一1,2,0)T,如令αi=(ai,bi,ci,di)T(i=1,2,3,4,5),试问: (I)α1能否由α2,α3,α4线性表示; (Ⅱ)α4能否由α1,α2,α3线性表示,并说明理由。
admin
2020-01-12
25
问题
已知线性方程组
的通解是(2,1,0,3)
T
+k(1,一1,2,0)
T
,如令α
i
=(a
i
,b
i
,c
i
,d
i
)
T
(i=1,2,3,4,5),试问:
(I)α
1
能否由α
2
,α
3
,α
4
线性表示;
(Ⅱ)α
4
能否由α
1
,α
2
,α
3
线性表示,并说明理由。
选项
答案
(I)注意到α
i
为所给方程组的增广矩阵的列向量,将方程组改写成列向量的形式:x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=α
5
,对应的齐次线性方程组为x
1
α
1
+x
2
α
2
+x
3
α
3
+x
4
α
4
=0, (*)因为(1,一1,2,0)
T
为方程组(*)的解,将其代入得到1.α
1
+(一1)α
2
+2.α
2
+0.α
4
=α
1
一α
2
+2α
3
=0,即α
1
=α
2
—2α
3
+0.α
4
,因而α
1
可由α
2
,α
3
,α
4
线性表示。 (Ⅱ)因方程组(*)的基础解系只含有一个解向量,故r(a)=n一1=4—1=3,因而A的列秩等于3。因为α
1
可由α
2
,α
3
,α
4
线性表示,故3=r([α
2
,α
3
,α
4
])=r([α
1
,α
2
,α
3
,α
4
])=r([α
1
,α
2
,α
3
])+1,因而α
4
不能由α
1
,α
2
,α
3
线性表示。
解析
转载请注明原文地址:https://jikaoti.com/ti/LiiRFFFM
0
考研数学三
相关试题推荐
设φ(x)=(x2一t)f(t)dt,其中f连续,则φ"(x)=________.
已知=_____.
[*]+C,其中C为任意常数
设A,B都是凡阶矩阵,E—AB可逆.证明E—BA也可逆,并且(E—BA)-1=E+B(E—AB)-1A.
已知方程组的通解是(1,2,一1,0)T+k(一1,2,一1,1)T,则a=__________.
求下列函数的带皮亚诺余项的麦克劳林公式:(Ⅰ)f(x)=(Ⅱ)f(x)=xln(1-x2)
设y=y(x)是由方程2y3一2y2+2xy一x2=1确定的,则y=y(x)的极值点是_____
设随机变量X服从参数为1的指数分布,随机变量函数Y=1—e-x的分布函数为FY(y),则=______.
用配方法化下列二次型为标准形:f(x1,x2,x3)=2x1x2+2x1x3+6x2x3.
设二次型f(x1,x2,x3)=(x1+2x2+x3)2+[-x1+(a-4)x2+2x3]2+(2x1+x2+ax3)2正定,则参数a的取值范围是()
随机试题
下列关于胆色素的叙述不正确的是
某小型体育馆屋盖平面尺寸为30m×50m,最经济合理的屋盖结构是:
银行存款日记账属于()。
徐某是甲合伙企业的普通合伙人,该合伙企业在经营过程中对外负债50万元,徐某应当承担()。
合伙企业解散后,原合伙人对合伙企业存续期间的债务仍应承担无限连带责任,但债权人在法定期限内未向债务人提出偿债要求的,该责任消灭。该法定期限为( )。
甲公司与乙公司分别签订了两份合同:一是以货换货合同,甲公司的货物价值200万元,乙公司的货物价值150万元;二是采购合同,甲公司购买乙公司50万元货物,但因故合同未能兑现。甲公司应缴纳印花税()元。
B注册会计师是Q公司2006年度会计报表审计的外勤审计负责人,在审计过程 中,需对助理人员提出的相关问题予以解答,并对其编制的有关审计工作底稿进行复核。请代为作出正确的专业判断。
世界旅游组织将每年的()确定为世界旅游日。
用含32p的磷酸盐培养液培养动物细胞,一段时间后,细胞的结构以及化合物中可能具有放射性的是()。①脱氧核糖②核膜③ATP④脂肪⑤转运RNA
求下列平面图形的面积:(I)y=x,y=xlnx及x轴所围图形;(Ⅱ)y=sinx,y=cosx,x=0,x=2π所围图形.
最新回复
(
0
)