首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
(1)证明方程xn+xn-1+…+x=1(n为大于1的整数)在区间内有且仅有一个实根; (2)记(1)中的实根为xn,证明存在,并求此极限.
admin
2014-01-26
42
问题
(1)证明方程x
n
+x
n-1
+…+x=1(n为大于1的整数)在区间
内有且仅有一个实根;
(2)记(1)中的实根为x
n
,证明
存在,并求此极限.
选项
答案
(1)令 f
n
(x)=x
n
+x
n-1
+…+x-1.因为f
n
(x)在[*]上连续,又[*],f
n
(1)=n-1>0, 由介值定理,存在x
n
∈[*],使f
n
(x
n
)=0(n=2,3,…),即原方程在区间[*]内至少有一个实根.又当x∈[*]时,f’(x)=1+2x+…+nx
n-1
>0,即f
n
(x)在[*]内单调增加,故原方程在区间[*]内有且仅有一个实根. (2)由(1)知数列{x
n
}有界,下面证明单调性. 因为 f
n
(x
n
)=0=f
n+1
(x
n+1
),n=2,3,…. 故 x
n
n
+x
n
n-1
+…+x
n
-1=(x
n+1
n-1
+…+x
n+1
n
n+1
n+1
>0, 即f
n
(x
n
)>f
n2
(x
n+1
),而f
n
(x)在[*]内单调增加,从而有x
n
>x
n+1
,即数列{x
n2
}单调减少(n=2,3,…),所以[*]存在,设为l.由于0<x
n
<x
2
<1,故0<
n
n
<x
2
n
.根据夹逼定理有[*]. 由f
n
(x
n
)=0(n=2,3,…),即x
n
n
+x
n
n-1
+…+x
n
=1,得[*], 令n→∞,取极限得[*],解得[*].故[*].
解析
[分析]根的存在性用介值定理,而唯一性利用单调性;对于(2),应先证明极限存在,在已知关系式两边取极限即可.
[评注]注意解答过程中的步骤0<x
n
<x
2
<1不是多余的,因为仅由0<x
n
<1是推不出
的.
转载请注明原文地址:https://jikaoti.com/ti/LgDRFFFM
0
考研数学二
相关试题推荐
(2012年)求极限.
设A为n阶实矩阵,AT是A的转置矩阵,则对于线性方程组(Ⅰ):Ax=0和(Ⅱ):ATAN=0,必有()
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2,则α1,A(α1+α2)线性无关的充分必要条件是()
(11年)已知函数f(u,v)具有二阶连续偏导数,f(1,1)=2是f(u,v)的极值,z=f(χ+y,f(χ,y)).求.
[2016年]设总体X的概率密度为其中θ∈(0,+∞)为未知参数,X1,X2,X3为来自总体X的简单随机样本,令T=max(X1,X2,X3).确定a,使得E(aT)=θ.
(08年)设X1,X2,…,Xn是总体N(μ,σ2)的简单随机样本,记(Ⅰ)证明T是μ2的无偏估计量;(Ⅱ)当μ=0,σ=1时,求DT.
(2007年)设函数y=y(x)由方程ylny—x+y=0确定,试判断曲线y=y(x)在点(1,1)附近的凹凸性.
[2008年]设n元线性方程组AX=b,其中证明行列式|A|=(n+1)an;
(2007年)当x→0+时,与等价的无穷小量是()
随机试题
2019年2月11日,甲银行与乙公司签订了《有追索权国内保理合同》,合同约定:乙公司将其应收账款1000万元转让给甲银行,甲银行为其提供公开型有追索权保理业务,若丙公司(保理预付款买方)没有按期足额归还保理预付款,甲银行有权向乙公司进行追索。同日,甲银行分
老年男性尿潴留最常见的原因是
新生儿缺氧缺血性脑病的主要病因是
1岁男婴,发现双下肢青紫1月。体查:胸骨左缘第2肋间可闻及粗糙响亮的连续性机器样杂音,诊断考虑
价值链在经济活动中是无处不在的,将企业价值链根据企业于相应供应方和需求方的关系,分别向其前、后衍生就形成了产业价值链。()
组织的外部环境具有的变动特性包括()。
实行低利率政策是抗击通货膨胀的有效手段。目前的低利率水平可以使中国通货膨胀处于可控范围之内,不会发生恶性通胀,也使企业能够以较低廉的利息代价得到资金支持,从而使企业渡过难关。以下哪项如果为真,最能反驳上述论断?
计划工作是()。
在一个文件被用户进程首次打开的过程中,操作系统需做的是_______。
在Access中已经建立了"学生"表,若查找"学号"是"S00001"或"S00002"的记录,应在查询设计视图的"条件"行中输入( )。
最新回复
(
0
)