首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设线性方程组 与方程 (Ⅱ):x1+2x2+x3=a-1 有公共解,求a的值及所有公共解.
设线性方程组 与方程 (Ⅱ):x1+2x2+x3=a-1 有公共解,求a的值及所有公共解.
admin
2021-01-25
29
问题
设线性方程组
与方程
(Ⅱ):x
1
+2x
2
+x
3
=a-1
有公共解,求a的值及所有公共解.
选项
答案
1 方程组(Ⅰ)的系数矩阵A的行列式为 [*] =(a-1)(a-2) (1)当|A|≠0,即a≠1且a≠2时,方程组(Ⅰ)只有零解,而零解x=(0,0,0)
T
不满足方程(Ⅱ),故当a≠1且a≠2时,(Ⅰ)与(Ⅱ)无公共解; (2)当a=1时,由A的初等行变换 [*] 得方程组(Ⅰ)的通解为x=c(1,0,-1)
T
,其中c为任意常数.显然当a=1时,(Ⅱ)是(Ⅰ)的一个方程,(Ⅰ)的解都满足(Ⅱ).所以,当a=1时,(Ⅰ)与(Ⅱ)的所有公共解是x=c(1,0,-1)
T
,其中c为任意常数; (3)当a=2时,由A的初等行变换 [*] 得(Ⅰ)的通解为x=k(0,1,-1)
T
,要使它是(Ⅱ)的解,将其代入方程(Ⅱ),得k=1,故当a=2时,(Ⅰ)与(Ⅱ)的公共解为x=(0,1,-1)
T
. 2 将(Ⅰ)与(Ⅱ)联立,得线性方程组 [*] 显然,方程组(Ⅲ)的解既满足(Ⅰ),又满足(Ⅱ);反之,(Ⅰ)与(Ⅱ)的公共解必满足(Ⅲ).因此,要求(Ⅰ)与(Ⅱ)公共解,只要求方程组(Ⅲ)的解即可. 对方程组(Ⅲ)的增广矩阵施行初等行变换 [*] 由线性方程组有解判定定理知,方程组(Ⅲ)有解[*](a-1)(a-2)=0[*]a=1或a=2. (1)当a=1时 [*] 由此得方程组(Ⅲ)的通解、即(Ⅰ)与(Ⅱ)的所有公共解为x=c(1.0.-1)
T
,其中c为任意常数; (2)当a=2时 [*] 由此得(Ⅲ)有唯一解x=(0,1,-1)
T
,故当a=2时,(Ⅰ)与(Ⅱ)的公共解为x=(0,1,-1)
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/LcaRFFFM
0
考研数学三
相关试题推荐
一电子仪器由两个部件构成,以X和Y分别表示两个部件的寿命(单位:千小时).已知X和Y的联合分布函数为问X与Y是否相互独立?
设随机变量X1,X2,…,Xn相互独立,Sn=X1+X2+…+Xn则根据列维一林德伯格中心极限定理,当n充分大时,Sn近似服从正态分布,只要X1,X2,…,Xn().
已知α1=(1,0,2,3),α2=(1,1,3,5),α3=(1,-1,a+2,1),α4=(1,2,4,a+8),β=(1,1,b+3,5).(1)a、b为何值时,β不能表示成α1,α2,α3,α4的线性组合?(2)a、b为何值时,
设随机变量X与Y独立同分布,且X的概率分布为记U=max(X,Y),V=min(X,Y).求U与V的协方差cov(U,V).
[2016年]设二维随机变量(X,Y)在区域D={(x,y)|0<x<1,}上服从均匀分布,令求Z=U+X的分布函数FZ(z).
设矩阵A=且A3=0.(I)求a的值; (Ⅱ)若矩阵X满足X—XA2一AX+AXA2=E,其中E为3阶单位矩阵,求X.
[2017年]设随机变量X,Y相互独立,Y的概率密度为求Z=X+Y的概率密度.
设X1,X2,…,X100相互独立且在区间[-1,1]上同服从均匀分布,则由中心极限定理≈______.
设A*是A的伴随矩阵,则(A*)-1=___________.
[2008年]设X1,X2,…,Xn是总体为N(μ,σ2)的简单随机样本,记当μ=0,σ=1时,求D(T).
随机试题
高热患者容易发生
2
下列哪味药忌用火煅
下列除哪项外,均可引起血清钾增高()
下列关于创业板上市公司超募资金使用管理的说法中,正确的有()。[2009年真题]Ⅰ.超募资金用于永久补充流动资金和归还银行贷款的金额,每12个月内累计不得超过超募资金总额的20%Ⅱ.超募资金用于永久补充流动资金或归还银行贷款的,须经
对应聘者的评价应该做到()。
Newtechnologylinkstheworldasneverbefore.Ourplanethasshrunk.It’snowa"globalvillage"wherecountriesareonlysec
夏商神权法思想可以概括为()。
在Excel中,如果想打印某块特定的区域,可以先用鼠标选中这块区域,然后______。
寄信人:陈雨收信人:有关负责人写信日期:2006年7月25日内容:兹证明持信人李萍毕业于广州大学,主修英语文学专业。作为她的老师很乐意向您推荐我的学生到贵校攻读硕士研究生学位。该生在校期间,各科成绩均优,而且兴趣广泛。具思想品德也值得
最新回复
(
0
)