首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似。 (Ⅱ)设,求可逆矩阵P,使得P-1AP=B。
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似。 (Ⅱ)设,求可逆矩阵P,使得P-1AP=B。
admin
2021-01-31
65
问题
(Ⅰ)设A,B为n阶可相似对角化矩阵,且有相同特征值,证明:矩阵A,B相似。
(Ⅱ)设
,求可逆矩阵P,使得P
-1
AP=B。
选项
答案
(Ⅰ)设A,B的特征值为λ
1
,λ
2
,…,λ
n
, 因为A,B可相似对角化,所以存在可逆矩阵P
1
,P
2
,使得 [*] 于是P
1
-1
AP
1
=P
2
-1
BP
2
,或(P
1
P
2
-1
)
-1
A(P
1
P
2
-1
)=B, 令P=P
1
P
2
-1
,则P
-1
AP=B,即矩阵A,B相似。 (Ⅱ)(Ⅱ)由|λE-A|=[*]=(λ+1)(λ-1)
2
=0得λ
1
=-1,λ
2
=λ
3
=1; 由|λE-B|=[*]=(λ+1)(λ-1)
2
=0得λ
1
=-1,λ
2
=λ
3
=1; [*] A的属于特征值λ
2
=λ
3
=1的线性无关的特征向量为[*], [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/LRaRFFFM
0
考研数学三
相关试题推荐
[2018年]设实二次型f(x1,x2,x3)=(x1-x2+x2)2+(x2+x3)2+(x1+ax3)2,其中a是参数.求f(x1,x2,x3)=0的解;
(2015年)Ⅰ)设函数u(x),v(x)可导,利用导数定义证明[u(x)v(x)]’=u’(x)v(x)+u(x)v’(x);Ⅱ)设函数u1(x),u2(x),…,un(x)可导,f(x)=u1(x)u2(x)…un(x),写出f(x)的
[2005年]设为正定矩阵,其中A,B分别为m阶、n阶对称矩阵,C为m×n矩阵.计算PTDP,其中
(95年)设f(χ)、g(χ)在区间[-a,a](a>0)上连续.g(χ)为偶函数,且f(χ)满足条件f(χ)+f(-χ)=A(A为常数)(1)证明∫-aaf(χ)g(χ)dχ=A∫0ag(χ)dχ(2)利用(1)的结论计算定积分|si
[2003年]设二次型f(x2,x2,x3)=XTAX=ax12+2x22-2x32+2bx1x3(b>0),其中二次型的矩阵A的特征值之和为1,特征值之积为-12.利用正交变换将二次型f化为标准形,并写出所用的正
设随机变量(X,Y)~N(0,0;1,4;0),则D(X2一2Y2)=___________.
已知α=[1,1,1]T是二次型2x12+x22+ax32+2x1x2+2bx1x3+2x2x3矩阵的特征向量,判断二次型是否正定,并求下列齐次方程组的通解:
设问方程组什么时候有解?什么时候无解?有解时,求出其相应的解.
设f(x)在[0,2]上连续,在(0,2)内二阶可导,且=0,又f(2)=2f(x)dx,证明:存在ξ∈(0,2),使得f’(ξ)+f"(ξ)=0。
设f(x)在x=a处二阶可导,则等于().
随机试题
沟通的过程包括()
某公司2000年上半年各月销售收入分别为:400万元,450万元,420万元,390万元,410万元,480万元。试用一次指数平滑法预测:(1)取仅=0.3时,预测2000年7月份的销售额;(2)取仅=0.6时,预测2000年7月份的销售额。
男,20岁。发热、头痛、恶心、呕吐3天。查体:T37.8℃,BP60/40mmHg,脉搏细数,躯干部可见出血点,双肾部有叩痛。检查:wBC30×109/L,中性粒细胞0.80,异形淋巴细胞0.10,血小板50×109/L,尿蛋白(++),最可能的诊断是
建设项目管理信息系统的教育体是围绕信息系统的应用对建设项目管理组织中的各级人员进行广泛的培训,它包括()。
可撤销的合同在撤销前,属于( )合同。
某大学寝室有8个人,三个是广东人,一个是北京人,两个是北方人,一个是保送生,三个是贫困生。假设上述介绍涉及该寝室的所有同学,则下列关于该寝室同学的判断与题干有矛盾的是:()
欧盟委员会发布消息称,回顾全球“金融危机”以来的__________,欧盟采取得当的________有效地控制住了危机的蔓延与发展,从而在最近几年取得了经济持续增长的佳绩。填入画横线部分最恰当的一项是:
下列涉及环境保护的说法错误的是()。
现在许多中大型企业建有企业数据仓库。关于数据仓库中数据的特点,下列说法一般情况下正确的是()。
cook
最新回复
(
0
)