设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(

admin2020-06-05  19

问题 设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);
②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则R(A)=R(B);
④若R(A)=R(B),则Ax=0与Bx=0同解.
以上命题中,正确的有(    ).

选项 A、①②
B、①③
C、②④
D、③④

答案B

解析 由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,即可得到正确选项为(B).
下面证明①,③正确.
对于①,由Ax=0的解均是Bx=0的解可知,方程组Ax=0的基础解系必可由Bx=0的基础解系线性表示,也就是Ax=0的基础解系包含解向量的个数不超过Bx=0的基础解系包含解向量的个数,即n-R(A)≤n-R(B),于是R(A)≥R(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n-R(A)=n-R(B),从而R(A)=R(B).
转载请注明原文地址:https://jikaoti.com/ti/LA9RFFFM
0

最新回复(0)