首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题: ①若Ax=0的解均是Bx=0的解,则R(A)≥R(B); ②若R(A)≥R(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则R(A)=R(B); ④若R(
admin
2020-06-05
19
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,B均为m×c矩阵,现有4个命题:
①若Ax=0的解均是Bx=0的解,则R(A)≥R(B);
②若R(A)≥R(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则R(A)=R(B);
④若R(A)=R(B),则Ax=0与Bx=0同解.
以上命题中,正确的有( ).
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,即可得到正确选项为(B).
下面证明①,③正确.
对于①,由Ax=0的解均是Bx=0的解可知,方程组Ax=0的基础解系必可由Bx=0的基础解系线性表示,也就是Ax=0的基础解系包含解向量的个数不超过Bx=0的基础解系包含解向量的个数,即n-R(A)≤n-R(B),于是R(A)≥R(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即n-R(A)=n-R(B),从而R(A)=R(B).
转载请注明原文地址:https://jikaoti.com/ti/LA9RFFFM
0
考研数学一
相关试题推荐
设A为3阶实对称矩阵,如果二次曲面方程在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为]()
设A为n阶非零矩阵,E为n阶单位矩阵.若A3=0,则
直线1:之间的关系是()
设可微函数f(x,y)在点(x0,y0)处取得极小值,则下列结论正确的是().
要使ξ1=(1,0,2)T,ξ2=(0,1,-1)T都是齐次线性方程组AX=0的解,只要系数矩阵为()
设α1,α2,…,αm与β1,β2,…,βs为两个n维向量组,且r(α1,α2,…,αm)=r(β1,β2,…,βs)=r,则().
设pn=,n=1,2,…,则下列命题正确的是()
设f(x)在[0,1]上连续,且0≤f(x)≤1,试证在[0,1]内至少存在—个ξ,使f(ξ)=ξ.
设函数f(x)在(一∞,+∞)内单调有界,{xn}为数列,下列命题正确的是
设f(x)在[a,b]上连续,在(a,b)内可导,又b>a>0,试证:存在两点ξ,η∈(a,b),使得f’(ξ)(b一a)=ηf’(η)(lnb—lna).
随机试题
Thelocalauthoritiesdecidedtokeeptheoldtempleforitshistorical______.
A.交感神经B.迷走神经C.窦神经D.舌咽神经E.降压神经人体主动脉弓压力感受器的传入神经是【】
核硬化
宫颈癌的临床分期依据
A.支原体肺炎B.肺炎链球菌肺炎C.慢性支气管炎急性发作期D.支气管哮喘E.支气管扩张症肺部叩诊浊音,语颤增强,闻及支气管呼吸音,常见于
某轴类零件原始直径100mm,允许最大磨损量为2mm,现该轴已运行使用2年,测得轴的直径为99.5mm,该轴的磨损率为()。
你和同事老宋一起参加某单位的座谈会,宣传业务和政策。到达会场时,老宋突发疾病,你会怎么做?
(北京2012-80)运动会上100名运动员排成一列,从左向右依次编号为1—100,选出编号为3的倍数的运动员参加开幕式队列,而编号为5的倍数的运动员参加闭幕式队列。问既不参加开幕式又不参加闭幕式队列的运动员有多少人?()
一种溶液,蒸发掉一定量的水后,溶液的浓度为10%;再蒸发掉同样多的水后,溶液的浓度变为12%;第三次蒸发掉同样多的水后,溶液的浓度将变为多少?
下列关于在SQL语句中使用DESC的说法中,正确的是
最新回复
(
0
)