首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知A,B都是n阶正定矩阵,证明:AB是n阶正定矩阵的充分必要条件是A与B可交换.
已知A,B都是n阶正定矩阵,证明:AB是n阶正定矩阵的充分必要条件是A与B可交换.
admin
2017-07-26
26
问题
已知A,B都是n阶正定矩阵,证明:AB是n阶正定矩阵的充分必要条件是A与B可交换.
选项
答案
必要性.若AB正定,则AB是对称的,即 AB=(AB)
T
=B
T
A
T
. 由于A,B均正定,知A
T
=A,B
T
=B,故 AB=BA. 即A与B可交换. 充分性.若AB=BA,则(AB)
T
=B
T
A
T
=BA一AB,知AB是对称矩阵.再由A,B均正定,知存在可逆矩阵P和Q,使得A=P
T
P,B=Q
T
Q.于是 Q(AB)Q
—1
=Q(P
T
P)(Q
T
Q)Q
—1
=(QP
T
)(PQ
T
)=(PQ
T
)
T
(PQ
T
). 即AB相似于矩阵(PQ
T
)
T
(PQ
T
).因为PQ
T
可逆,知(PQ
T
)
T
(PQ
T
)正定.因此,AB的特征值全大于零,故AB正定.
解析
转载请注明原文地址:https://jikaoti.com/ti/L2SRFFFM
0
考研数学三
相关试题推荐
[*]
n阶方阵(一∞,0)U(0,+∞),当a≠b且a≠一(n一1)b时,秩A=_____
设中与A等价的矩阵有()个.
齐次方程组的系数矩阵为A,若存在三阶矩阵B≠0,使得AB=0,则().
设A是m×n矩阵,则下列4个命题①若r(A)=m,则非齐次线性方程组Ax=b必有解;②若r(A)=m,则齐次方程组Ax=0只有零解;③若r(A)=n,则非齐次线性方程组Ax=b有唯一解;④若r(A)=n,则齐次方程组Ax=0只有零解中正确的是
求以曲线为准线,以原点O(0,0,0)为顶点的锥面方程.
设α1,α2,α3均为3维列向量,记矩阵A=(α1,α2,α3),B=(α1+α2+α3,α1+2α2+4α3,α1+3α2+9α3).如果丨A丨=1,那么丨B丨=__________.
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设X为随机变量,E|X|r(r>0)存在,试证明:对任意ε>0有
对于实数x>0,定义对数函数,依此定义试证:(1)=-lnx(x>0);(2)ln(xy)=lnx+lny(x>0,y>0).
随机试题
简述公共政策监控的主要功能。
下列属于我国法的渊源的是
低分化肿瘤的特点是()
A.WhendoyouneeditB.DoyouhaveanyavailableC.WhatdoyoumeanD.MayIcomeovertomorrowtotakealook
女性,48岁,5年前患右上肺结核,痰菌阳性,经异烟肼、链霉素和乙胺丁醇治疗6个月,痰菌转阴,病灶明显吸收,自行停药,未再随访。近1个月来感乏力,2天前起咳嗽,痰中带血就诊。X线胸片示右上肺大片密影,边缘不清,密度不均,高密度病灶部分隐约见有钙化。侧位病变位
骨巨细胞瘤的好发年龄是
具有悬浮状、堆积状的可燃粉尘或可燃纤维,虽不能形成爆炸混合物,但在数量和配置上能引起火灾危险的环境,照明灯具应选用()。
注册会计师应当针对评估的认定层次重大错报风险设计和实施进一步审计程序,包括审计程序的性质、时间和范围。进一步审计程序的目的包括通过实施控制测试以确定内部控制运行的有效性,通过实施实质性程序以发现认定层次的重大错报。进一步控制测试审计程序的类型不包括( )
TheMuseumofContemporary(当代的)Art(MOCA)hasstartedanewseriesofprograms,knownas“ArtMakesGoodBusiness.“Itisdesigned
Manyofthemostdamagingandlifethreateningtypesofweather--torrentialrains,severethunderstorms,andtornadoes--beginqu
最新回复
(
0
)