首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
已知齐次线性方程组(Ⅰ)的基础解系为ξ1=[1,0,1,1]T,ξ2=[2,1,0,-1]T,ξ3=[0,2,1,-1]T,添加两个方程 后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
admin
2018-09-25
26
问题
已知齐次线性方程组(Ⅰ)的基础解系为ξ
1
=[1,0,1,1]
T
,ξ
2
=[2,1,0,-1]
T
,ξ
3
=[0,2,1,-1]
T
,添加两个方程
后组成齐次线性方程组(Ⅱ),求(Ⅱ)的基础解系.
选项
答案
方程组(Ⅰ)的通解为 k
1
ξ
1
+k
2
ξ
2
+k
3
ξ
3
= [*] 其中k
1
,k
2
,k
3
是任意常数.代入添加的两个方程,得 [*] 得解η
1
=[2,一3,0]
T
,η
2
=[0,1,-1]
T
,故方程组(Ⅱ)的基础解系为 ζ
1
=2ξ
1
-3ξ
2
=[-4,-3,2,5]
T
,ζ
2
=ξ
2
-ξ
3
[2,-1,-1,0]
T
.
解析
转载请注明原文地址:https://jikaoti.com/ti/Ku2RFFFM
0
考研数学一
相关试题推荐
设f(x)在[-2,2]上有连续的导数,且f(0)=0,F(x)=f(x+t)dt,证明级数绝对收敛.
设n维列向量α1,α2,…,αn-1,β线性无关,且与非零向量β1,β2都正交.证明β1,β2线性相关,α1,α2,…,αn-1,β1线性无关.
已知α1,α2,α3线性无关,证明2α1+3α2,α2一α3,α1+α2+α3线性无关.
设n阶矩阵A=,证明行列式|A|=(n+1)an.
设(Ⅰ)求f′(x);(Ⅱ)证明:x=0是f(x)的极大值点;(Ⅲ)令xn=,考察f′(x0)是正的还是负的,n为非零整数;(Ⅳ)证明:对δ>0,f(x)在(-δ,0]上不单调上升,在[0,δ]上不单调下降.
设f(x)分别满足如下两个条件中的任何一个:(Ⅰ)f(x)在x=0处三阶可导,且=1;(Ⅱ)f(x)在x=0邻域二阶可导,f′(0)=0,且-1)f″(x)-xf′(x)=ex-1,则下列说法正确的是
证明:与基础解系等价的线性无关的向量组也是基础解系.
求齐次方程组的基础解系.
设A=(aij)是m×n矩阵,β=(b1,b2,…,bn)是n维行向量,如果方程组(Ⅰ)Ax=0的解全是方程(Ⅱ)b1x1+b2x2+…+bnxn=0的解,证明β可用A的行向量α1,α2,…,αm线性表出.
已知3阶矩阵A的第1行元素全是1,且(1,1,1)T,(1,0,一1)T,(1,一1,0)T是A的3个特征向量,求A.
随机试题
甲、乙采用数据电文形式订立一份货物买卖合同,关于该合同成立的地点,下列判断正确的是()。
有关川崎病的治疗,应除外
所有食品动物禁用的药物是()
二陈汤治气痰,可加二陈汤治食痰,可加
A.吲哚美辛B.布桂嗪C.塞来昔布D.秋水仙碱E.丙吡胺选择性抑制COX一2的药物是()。
单独的装饰装修工程其质量验收应由()组织进行。
社会服务策划主要有:战略性策划、()、问题解决策划和创新策划等共四种形式。
每一个活人之塑像,是这个人来一刀,那个人来一刀,有时是万刀齐发。倘使刀法不合于交响曲之节奏。那便是处处伤痕,而难以成为真善美之活塑像。在刀法之交响中,投入一丝一毫的杂声,都是中伤整个的和谐。陶行知的比喻极其生动地说明教师应该做到()。
关于用户创建工具栏的如下说法中,______是正确的。
Whatisthespeaker’sattitudetowardsheavymetalmusic?
最新回复
(
0
)