首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
设A,B为三阶矩阵,且AB=A-B,若λ1,λ2,λ3为A的三个不同的特征值,证明:AB=BA;存在可逆矩阵P,使得P-1AP,P-1BP同时为对角矩阵.
admin
2022-11-08
4
问题
设A,B为三阶矩阵,且AB=A-B,若λ
1
,λ
2
,λ
3
为A的三个不同的特征值,证明:AB=BA;存在可逆矩阵P,使得P
-1
AP,P
-1
BP同时为对角矩阵.
选项
答案
由AB=A-B得A-B-AB+E=E,(E+A)(E-B)=E,即E-B与E+A互为逆矩阵,于是(E-B)(E+A)=E=(E+A)(E-B),故AB=BA.因为A有三个不同的特征值λ
1
,λ
2
,λ
3
,所以A可以对角化,设A的三个线性无关的特征向量为ξ
1
,ξ
2
,ξ
3
,则有A(ξ
1
,ξ
2
,ξ
3
)=(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),BA(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),AB(ξ
1
,ξ
2
,ξ
3
)=B(ξ
1
,ξ
2
,ξ
3
)diag(λ
1
,λ
2
,λ
3
),于是有ABξ
i
=λ
i
Bξ
i
,i=1,2,3.若Bξ
i
≠0,则Bξ
i
是A的属于特征值λ
i
的特征向量,又λ
i
为单根,所以有Bξ
i
=μ
i
ξ
i
;若Bξ
i
=0,则ξ
i
是B的属于特征值0的特征向量.无论哪种情况,B都可以对角化,而且ξ
i
是B的特征向量,因此,令P=(ξ
1
,ξ
2
,ξ
3
),则P
-1
AP,P
-1
BP同为对角阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/KI2iFFFM
0
考研数学三
相关试题推荐
什么是同义词?怎样辨析同义词?
以下哪个不是中介语的特征?()
安德森的心智技能形成的三阶段理论依次是()阶段、()阶段和()化阶段。
只要前提正确且逻辑推理结构有效,则结论必然正确。根据以上判断。以下哪几种情况是可能出现的?Ⅰ.结论正确且前提正确,但逻辑结构是无效的。Ⅱ.逻辑推理结构有效且结论正确,但前提是错误的。Ⅲ.前提错误且逻辑结构无效,但结论正确。Ⅳ.前提错误且逻辑结构无效
凡是绿色或发芽的土豆中都含有较多的毒性生物碱——茄碱。没有一个经过检查的土豆是绿色的或发芽的。所以,经过检查的土豆都是可以安全食用的。如果使用以下哪项陈述作为假设,上面推理的结论就可以逻辑地推出?
设A为n阶可逆矩阵(n≥2),则[(A*)*]-1=________(用A*表示).
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,…,Aαn-1=αn,Aαn=0.证明:α1,α2,…,αn线性无关;求A的特征值与特征向量.
计算下列不定积分:
已知y’=f’(x)的图形是一条开口向着y轴的正向的二次抛物线,与x轴交于x=0和x=2两点.设f(x)有极大值4和极小值0,求f(x).
随机试题
甲提供资金,乙组织丙和丁以乡村教师戊为原型创作小说《小河弯弯》。在创作中,丙写提纲,丁写初稿,丙修改,戊提供了生活素材,乙提供了一些咨询意见。下列哪些选项是错误的?()
心室波群为调节M型曲线显示的解剖结构包括
土壤环境质量评价指标包括:土壤资源评价、()、单位项评价指标、综合指标。
我国针对居民储蓄采取()的储蓄原则。
李老师在自己班上发起评最坏儿童的活动,要评出全班最坏的3个小朋友。某5岁小男生小刚被评为第3个最坏儿童,小朋友给他列出了16条罪状。那天放学回家,妈妈发现小刚无精打采,一问才知真相。妈妈很愤怒,但她还是冷静地要求李老师收回这次评选的结果。李老师却说,这是其
设函数f(x)在[0,+∞)上连续、单调不减且f(0)≥0,试证函数在[0,+∞)上连续且单调不减(其中n>0).
Todevelopamarketingstrategybeginswithidentifyingandanalyzingatargetmarket.Thisstep(144)listingcommoncharacteri
ThenewlyrecruitedjuniordataanalystsatAdecoTechnologiesmaybeginworkingonactualprojects______followingthemandatory
A、Shedidn’twanttospendherholidaywithhim.B、Shewasn’tentitledtotakeavacationforthetimebeing.C、Sheenjoyedher
A、Narrowdownthetopicofherarticle.B、Readandreviseheressay.C、Providesomefactsforheropinion.D、Givehersomeadvic
最新回复
(
0
)