首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. 试证A可对角化,并求对角阵A;
设A是一个n阶方阵,满足A2=A,R(A)=r,且A有两个不同的特征值. 试证A可对角化,并求对角阵A;
admin
2019-08-26
36
问题
设A是一个n阶方阵,满足A
2
=A,R(A)=r,且A有两个不同的特征值.
试证A可对角化,并求对角阵A;
选项
答案
设λ是A的特征值,由于A
2
=A,所以λ
2
=λ,且A有两个不同的特征值,从而A的特征值为0和1. 又因为A
2
=A,即A(A—E)=O,故R(A)十R(A—E)=n.事实上,因为A(A—E) =O,所以 R(A)+R(A—E)≤n 另外,由于E—A同A—E的秩相同,则有 n=R(E)=R[(E—A)+A]≤R(A)+R(E—A)=R(A)+ R (A—E). 从而 R(A)+R(A—E)=n 当λ=1时.闪为R(A—E)=n—R(A)=n—r,从而齐次线性方程组(E—A)x=0的基础解系含有r个解向量,闪此,A属于特征值1有r个线性无关特征向量,记为η
1
,η
2
,…,η
r
. 当λ=0时,因为R(A)=r,从而齐次线性方程组(0·E—A)x=0的基础解系含n—r个解向量. 因此,A属于特征值0有n—r个线性无关的特征向量,记为η
r+1
,η
r+2
,…,η
n
. 于是η
1
,η
2
,…,η
n
是A的n个线性无关的特征向量,所以A可对角化,并且对角阵为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/KCnRFFFM
0
考研数学三
相关试题推荐
讨论下列函数的连续性并判断间断点的类型:
求下列函数带皮亚诺余项型至括号内所示阶数的麦克劳林公式:f(x)=(3阶).
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d—P),其中a,b,c,d,e都是正的常数,且d>b.求:需求对价格的弹性的绝对值为1时的产量是多少?
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d—P),其中a,b,c,d,e都是正的常数,且d>b.求:这时需求对价格的弹性是多少?
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d—P),其中a,b,c,d,e都是正的常数,且d>b.求:产量Q为多少时,利润最大?最大利润是多少?
设二维随机变量(X,Y)在区域D={(x,y)|0≤y≤1,y≤x≤y+1}内服从均匀分布,求边缘密度函数,并判断X,Y的独立性.
袋中有大小相同的10个球,其中6个红球,4个白球,现随机地抽取两次,每次取一个,定义两个随机变量X,Y如下:试就放回与不放回两种情形,求出(X,Y)的联合分布律.
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=
设A和B是任意两个概率不为零的互不相容事件,则下列结论中肯定正确的是:
随机试题
企业系统规划法的基本出发点包括:()。
蒸馏塔板的作用是()。
A.超声心动,左室径65mmB.超声心动IVS:LVPW为1.5:1C.超声心动出现右室前壁以及房室沟处无反射区D.超声心动二尖瓣EF斜率下降E.超声心动室间隔连续中断室缺
班级合唱教学初级阶段最有效的形式是()。
甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒人乙容器,使酒精和水混合;第二次将乙容器中的一部分混合液倒人甲容器,这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%。那么第二次从乙容器倒人甲容器的混合液是多少升?
躯干、四肢在()的投射关系是左右交叉、上下倒置。
It’shightimethatthegirl______senttoschool.
在Access中已经建立了“学生”表,若查找“学号”是“S00001”或“S00002”的记录,应在查询设计视图的“条件”行中输入()。
Insomepartsoftheworldyouwillseemoreandmorewhitemarks,______specialroutesreservedforbikes,placedattheedgeo
He______claimedhisinnocenceanddeniedanyinvolvementinthatscandal.
最新回复
(
0
)