首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
二次型f(x1,x2,x3)=x12+ax22+x32-4x1x2-8x1x3-4x2x3经过正交变换化为标准形5y12+6y22-4y32,求: (1)常数a,b;(2)正交变换的矩阵Q.
admin
2019-08-28
37
问题
二次型f(x
1
,x
2
,x
3
)=x
1
2
+ax
2
2
+x
3
2
-4x
1
x
2
-8x
1
x
3
-4x
2
x
3
经过正交变换化为标准形5y
1
2
+6y
2
2
-4y
3
2
,求:
(1)常数a,b;(2)正交变换的矩阵Q.
选项
答案
(1)令A=[*],则f(x
1
,x
2
,x
3
)=X
T
AX,矩阵A的特征值为λ
1
=5,λ
2
=b,λ
3
=-4, 由 [*] 从而[*],特征值为λ
1
=λ
2
=5,λ
3
=-4. (2)将λ
1
=λ
2
=5代入(λE-A)X=0,即(5E-A)X=0, 由5E-A=[*]得λ
1
=λ
2
=5对应的线性无关的特征向量为α
1
=[*],α
2
=[*] 将λ
3
=-4代入(λE-A)X=0,即(4E+A)X=0, 由4E+A=[*]得λ
3
=-4对应的线性无关的特征向量为α
3
=[*] 令β
1
=α
1
-[*],β
2
=α
2
-[*],β
3
=α
3
=[*] 单位化得 [*] 所求的正交变换矩阵为 [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/K9nRFFFM
0
考研数学三
相关试题推荐
求齐次方程组的基础解系.
设f(x)=在x=0连续,则常数a与b满足的关系是_________.
设二维连续型随机变量(X,Y)在区域D上服从均匀分布,其中D={(x,y)|x+y|≤1,|x一y|≤1},求X的边缘密度fX(x)与在X=0条件下,关于Y的条件密度fY|X(y|0).
(2015年)设函数f(x)=x+aln(1+x)+bxsinx,g(x)=kx3.若f(x)与g(x)在x→0时是等价无穷小,求a,b,k的值.
设有向量α1=(1,2,0)T,α2=(1,a+2,-3a)T,α3=(-1,-b-2,a+2b)T,β=(1,3,-3)T.试讨论当a、b为何值时,(1)β不能由α1,α2,α3线性表示;(2)可由α1,α2,α3惟一地线性表示,并求出表示式;(3
设A是n阶矩阵,α是n维列向量,且秩=秩(A),则线性方程组()
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且A的秩r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,c表示任意常数,则线性方程组Ax=b的通解X=()
设矩阵A=,且A3=0.(Ⅰ)求a的值;(Ⅱ)若矩阵X满足X-XA2-AX+AXA2=E,其中E为3阶单位矩阵,求X.
已知二次型f(x1,x2,x3)=5x12+5x22+cx32-2x1x2+6x1x3-6x2x3的秩为2.指出方程f(x1,x2,x3)=1表示何种二次曲面.
设{an)与{bn}为两个数列,下列说法正确的是().
随机试题
我国地质调查局认定,2008年5月12日发生在四川汶川的地震,其产生的主要原因是()。
驾驶机动车进入左侧车道可以掉头。
注射液的粗滤方法常采用
某企业2004年利润总额200万元,上缴所得税66万元,当年在成本中列支的全部利息67万元,折旧、摊销20万元,还本金额60万元,该企业当年的偿债备付率为()。
桥梁拆除施工中,进行基础或局部块体拆除时,宜采用()的方法。
借款人申请贷款展期时,向银行提交的展期申请内容包括()。
根据《合同法》的规定。下列关于赠与人享有撤销赠与权利的表述中,不正确的是()。(2010年)
StandingtallasthedefininglandmarkofTorontoistheCNTower,Canada’sNationalTower.On553.33metres,itistheworld
Justasthereareoccupationsthatrequirecollegeorevenhigherdegrees,sotooarethereoccupations______technicaltraining
Itisnotthe"somedayIwillwinthelottery"kindofdaydream,butthekindthattapsintothehiddenpartofyourbrain.That
最新回复
(
0
)