首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n阶方阵A≠0,满足Am=0(其中m为某正整数). 若方阵B满足AB=BA,证明:|A+B|=|B|.
设n阶方阵A≠0,满足Am=0(其中m为某正整数). 若方阵B满足AB=BA,证明:|A+B|=|B|.
admin
2017-06-14
27
问题
设n阶方阵A≠0,满足A
m
=0(其中m为某正整数).
若方阵B满足AB=BA,证明:|A+B|=|B|.
选项
答案
当方阵B可逆时,欲证的等式为 |A+B|=|B|<=>|B
-1
||A+B|=1<=>|B
-1
A+E|=1.利用上一题,要证|B
-1
A+ E|=1,只要证B
-1
A为幂零矩阵即可,等式AB=BA两端左乘B
-1
,得B
-1
AB=A,两端右 乘B
-1
,得B
-1
A=AB
-1
,即A与B
-1
可交换,故由A
m
=0,得(B
-1
A)
m
=(B
-1
)
m
A
m
=0,所以,当方阵B可逆时结论成立. 当B不可逆时,即|B|=0时,欲证的等式成为|A+B|=0.因为|B|=0,故B有特征值0,即存在非零列向量考,使Bξ=0,故对任意正整数K,有B
k
ξ=0.注意A与B可交换,有 [*] 即齐次线性方程组(A+B)
m
x=0有非零解x=ξ,故该方程组的系数行列式为零,即 |(A+B)|
m
=|A+B|
m
=0, 故|A+B|=0,因此当B不可逆时结论也成立. 故得证.
解析
转载请注明原文地址:https://jikaoti.com/ti/K7wRFFFM
0
考研数学一
相关试题推荐
π
设f(x)具有二阶连续导数,f(0)=0,f’(0)=1,且[xy(x+y)-f(x)y]dx+[f’(x)+x2y]dy=0为一全微分方程,求f(x)及此全微分方程的通解.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
设λ1,λ2是矩阵A的两个不同的特征值,对应的特征向量分别为α1,α2则α1,A(α1+α2)线性无关的充分必要条件是
设α=(1,1,1)T,β=(1,0,k)T,若矩阵αβT相似于,则k=__________.
若3维列向量α,β满足αTβ=2,其中αT为α为转置,则矩阵βαT的非零特征值为
设A为n阶可逆矩阵,λ是A的一个特征值,则A的伴随矩阵A*的特征值之一是().
设R3中的向量ξ在基a1=(1,-2,1)T,a2=(0,1,1)T,a3=(3,2,1)T下的坐标为(x1,x2,x3)T,它在基β1,β2,β3下的坐标为(y1,y2,y3)T,且y1=x1-x2-x3,y2=-x1+x2,y3=x1+2x3,则由基β
设点M(ξ,η,ζ)是椭球面上第一象限中的点,S是该椭球面点M处的切平面被三个坐标面所截得的三角形上侧,求(ξ,η,ζ),使曲面积分为最小,并求此最小值.
随机试题
炭疽毒素毒性作用主要是直接损伤()
糖皮质激素的主要不良反应有:
以下不属于参与建设项目环境保护验收的单位是()。
科研用蝴蝶标本
期货公司和从事中间介绍业务的证券公司应当在中国金融期货交易所为投资者办理股指期货开户手续。()
如何理解教学的含义?
以下叙述中,错误的是()
Whendoesthisconversationmostprobablytakeplace?
Whoistheman?
SpeakerA:I’vegotafeverandareallybadheadache.SpeakerB:______
最新回复
(
0
)