首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
admin
2019-08-06
41
问题
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g’(x)≠0.证明:存在ξ∈(a,b),使得
选项
答案
令F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x),则F(x)在[a,b]上连续,在(a,b)内可导,且F(a)=F(b)=f(a)g(b),由罗尔定理,存在ξ∈(a,b),使得F’(ξ)=0,而F’(x)=f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x),所以 [*]
解析
这是含端点和含ξ的项的问题,且端点与含ξ的项不可分离,具体构造辅助函数如下.把结论中的ξ换成x得
,整理得
f’(x)g(b)+f(a)g’(x)一f’(x)g(x)一f(x)g’(x)=0,
还原得
[f(x)g(b)+f(a)g(x)一f(x)g(x)]’=0,
辅助函数为
F(x)=f(x)g(b)+f(a)g(x)一f(x)g(x).
转载请注明原文地址:https://jikaoti.com/ti/JcnRFFFM
0
考研数学三
相关试题推荐
设f(x)在(-∞,+∞)上有定义,且对任意的x,y∈(-∞,+∞)有|f(x)-f(y)|≤|x-y|.证明:|∫abf(x)dx-(b-a)f(a)|≤(b-a)2.
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=0,∫abf(x)dx=0.证明:存在ξ∈(a,b),使得f’’(ξ)=f(ξ);
设随机变量X~U(0,1),在X=x(0<x<1)下,Y~U(0,x).求Y的边缘密度函数.
设A,B为n阶矩阵,且r(A)+r(B)<n.证明:A,B有公共的特征向量.
设方程组有无穷多个解,为矩阵A的分别属于特征值λ1=1,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设的一个特征值为λ1=,其对应的特征向量为求常数a,b,c;
设α1,α2,…,αn为n个n维向量,证明:α1,α2,…,αn线性无关的充分必要条件是任一n维向量总可由α1,α2,…,αn线性表示.
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的敛散性.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,c∈[a1,an]且f(a2)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得
随机试题
以下肿瘤不属腹膜后脏器的是
实施输卵管结扎术的合适时期是
可引起金鸡纳反应的抗心律失常药是
根据《建设工程勘察设计管理条列》的规定,建设工程勘察、设计方案的评标一般不考虑()。[2011年真题]
某工程的施工合同工期为16周,项目监理机构批准的施工进度计划如下图所示(时间单位:周)。各工作均按匀速施工。施工单位的报价单(部分)见下表。工程施工到第4周时进行进度检查,发生如下事件:事件1:A工作已经完成,但由于设计图纸局部修改,实际完成的工程量
下列各项不属于市场预期理论的观点的是( )。
下列关于舞弊的说法中,正确的是()。
社会主义精神文明建设的目标是______。
Someinformationismissing.Youwillhearawomanorderingsomeelectricalequipment.Foreachquestion9-15,fillinthemissi
InWashingtonthisweek,TreasurySecretaryGeithnerannouncednewstepstorebuildtrustinfinancialmarketsandrestartthef
最新回复
(
0
)