首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=________.
admin
2018-07-31
32
问题
设A=(a
ij
)是3阶非零矩阵,|A|为A的行列式,A
ij
为a
ij
的代数余子式.若a
ij
+A
ij
=0(i,j=1,2,3),则|A|=________.
选项
答案
一1.
解析
由A≠O,不妨设a
11
≠0,由已知的A
ij
=一a
ij
(i,j=1,2,3),得
|A|一
a
1j
2
≠0,
及A=一(A
*
)
T
.其中A
*
为A的伴随矩阵.以下有两种方法:
方法1 用A
T
右乘A=一(A
*
)
T
的两端.得
AA
T
=一(A
*
)AT=一(AA
*
)
T
=一(|A|I)
T
,
其中I为3阶单位矩阵,上式两端取行列式,得
|A|
2
=(一1)
3
=|A|
3
,或|A|
2
(1+|A|)=0.
因|A|≠0,所以|A|=一1.
方法2 从A=一(A
*
)
T
两端取行列式,并利用|A
*
|=|A|
2
.得
|A|=(一1)
3
|A
*
|=一|A|
2
,或|A|(1+|A|)=0,
因|A|≠0,所以|A|=一1.
转载请注明原文地址:https://jikaoti.com/ti/JP2RFFFM
0
考研数学一
相关试题推荐
设A,B为n阶正定矩阵.证明:A+B为正定矩阵.
设A为n阶正定矩阵.证明:对任意的可逆矩阵P,PTAP为正定矩阵.
设A=(1)求常数a,b,c;(2)判断A是否可对角化,若可对角化,求可逆矩阵P,使得P-1AP为对角矩阵.若不可对角化,说明理由.
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1—ξ2—ξ3,Aξ3=2ξ1—2ξ2—ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
计算,其中D为单位圆x2+y2=1所围成的第一象限的部分.
设矩薛A满足(2E一C-1B)AT=C-1,且B=,求矩阵A.
设A为n阶非奇异矩阵,α是n维列向量,b为常数,P=(1)计算PQ;(2)证明PQ可逆的充分必要条件是αTA-1α≠b.
设A是n阶方阵,A+E可逆,且f(A)=(E—A)(E+A)-1.证明:(1)[E+f(A)](E+A)=2E;(2)f[f(A)]=A.
设三阶方阵A,B满足关系式A-1BA=6A+BA,且A=,则B=_______。
随机试题
简述票据行为的解释原则。
论舌第一部专著为
属于控制基本过程的关键是
A.神经系统毒性B.中枢兴奋作用C.降压作用D.低血钾E.骨髓抑制
钢筋混凝土简支矩形截面梁尺寸为250mm×500mm,混凝土强度等级为C30,梁受拉区配置3Φ20的钢筋(942mm2),混凝土保护层c=25mm,承受均布荷载,梁的计算跨度I0=6m。
灰色是黑加白混合而成的中合色,因而正灰色是黑与白对等的中合色,也可以是全色相或补色按比例混合色。
在库存管理中,体现“抓住关键少数”、“突出重点”原则的库存成本控制方法是()。
王羲之被称为“书圣”,他的代表作《兰亭序》的书体是()。
Anobviouschangeofattitudeatthetoptowardswomen’sstatusinsocietywill______throughthecurrentlawsysteminJapan.
WhichofthefollowingisNOTmentionedasadifferencebetweentheone-bedroomandtwo-bedroomapartments?
最新回复
(
0
)