设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.

admin2021-02-25  46

问题 设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.

选项

答案记A=(a1,a2,…,as),B=(b1,b2,…,br),则有B=AK,必要性([*]):设向量组B线性无关,知R(B)=r,又由B=AK,知R(K)≥R(B)=r,而R(K)≤r,于是R(K)=r.充分性([*]):设R(K)=r.要证向量组B线性无关,只要证R(B)=r,即证Bx=0只有零解即可.若Bx=0,即AKx=0,又因R(A)=s,则Kx=0,又因R(K)=r,则有x=0,即方程组Bx=0只有零解,于是R(B)=r,即向量组B线性无关.

解析
转载请注明原文地址:https://jikaoti.com/ti/JMARFFFM
0

最新回复(0)