首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
设向量组B:b1,b2,…,br能由向量组A:a1,a2,…,as线性表示为(b1,b2,…,br)=(a1,a2,…,as)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
admin
2021-02-25
46
问题
设向量组B:b
1
,b
2
,…,b
r
能由向量组A:a
1
,a
2
,…,a
s
线性表示为(b
1
,b
2
,…,b
r
)=(a
1
,a
2
,…,a
s
)K,其中K为s×r矩阵,且向量组A线性无关,证明向量组B线性无关的充分必要条件是矩阵K的秩R(K)=r.
选项
答案
记A=(a
1
,a
2
,…,a
s
),B=(b
1
,b
2
,…,b
r
),则有B=AK,必要性([*]):设向量组B线性无关,知R(B)=r,又由B=AK,知R(K)≥R(B)=r,而R(K)≤r,于是R(K)=r.充分性([*]):设R(K)=r.要证向量组B线性无关,只要证R(B)=r,即证Bx=0只有零解即可.若Bx=0,即AKx=0,又因R(A)=s,则Kx=0,又因R(K)=r,则有x=0,即方程组Bx=0只有零解,于是R(B)=r,即向量组B线性无关.
解析
转载请注明原文地址:https://jikaoti.com/ti/JMARFFFM
0
考研数学二
相关试题推荐
设,已知线性方程组Ax=b存在2个不同的解.(1)求λ,a;(2)求方程组Ax=b的通解.
已知平面上三条不同直线的方程分别为l1:ax+2by+3c=0,l2:bx+2cy+3a=0,l3:cx+2ay+3b=0。试证:这三条直线交于一点的充分必要条件为a+b+c=0。
(04年)设f(x)=(I)证明f(x)是以π为周期的周期函数.(Ⅱ)求f(x)的值域.
已知f(x)在[0,3π/2]上连续,在(0,3π/2)内是函数的一个原函数,且f(0)=0。证明f(x)在区间(0,3π/2)内存在唯一零点。
设向量组α1=[1,1,1,3]T,α2=[一1,一3,5,1]T,α3=[3,2,一1,p+2]T,α4=[一2,一6,10,p]T.(1)p为何值时,该向量组线性无关?并在此时将向量α=[4,1,6,10]T用α1,α2,α3,α4线性表出;(2)
设,则f(x)的间断点为x=_________.
计算二重积分,其中积分区域D={(x,y)|0≤x2≤y≤x≤1}.
设A,B均为n阶矩阵,且AB=A+B,则下列命题中:①若A可逆,则B可逆;②若A+B可逆,则B可逆;③若B可逆,则A+B可逆;④A—E恒可逆.正确的个数为()
微分方程y"一4y’+4y=x2+8e2x的一个特解应具有形式(其中a,b,c,d为常数)()
设f(x)在[a,b]上连续,且对任意的t∈[0,1]及任意的x1,x2∈[a,b]满足:.证明:.
随机试题
自然界中不同生物之间的共生关系一般理解为“互相依存,互利互惠”。下列存在共生关系的是()。
并发性白内障的常见病因不包括()
与口服脊髓灰质炎减毒活疫苗注意事项不符的是
带下过多的主要发病机理错误的是()
子宫峡部的上界为( )
氯霉素的抗菌特点是
调节十二经脉气血,主要与奇恒之腑间关系密切的是
某污水处理厂生产调度例会上,调度长根据总工程师的指示,安排某车间主任负责对污泥泵进行检修。检修过程中,工人甲误开切换阀门,导致1人受伤,造成生产安全事故。对本次事故负有直接责任的是()。
学生在学校被开水烫伤,学校应该()。
在审计报告中,下列属于管理层对财务报表的责任段的内容有()。
最新回复
(
0
)