首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x1,x2,…,xn)=XTAX是正定二次型.证明: (Ⅰ)二次型平方项的系数均大于零; (Ⅱ)|A|>0; 举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
设f(x1,x2,…,xn)=XTAX是正定二次型.证明: (Ⅰ)二次型平方项的系数均大于零; (Ⅱ)|A|>0; 举例说明上述条件均不是f(x1,x2,…,xn)正定的充分条件.
admin
2016-07-22
30
问题
设f(x
1
,x
2
,…,x
n
)=X
T
AX是正定二次型.证明:
(Ⅰ)二次型平方项的系数均大于零;
(Ⅱ)|A|>0;
举例说明上述条件均不是f(x
1
,x
2
,…,x
n
)正定的充分条件.
选项
答案
(I)利用厂正定的定义证:f正定,由定义,任给X≠0,均有f=X
T
AX>0. 取X=(1,0,…,0)
T
≠0则 X
T
AX=(1,0,…,0)[*]=a
11
>0. 同理,取X=(0,…,1,…,0)
T
≠0,X
T
AX=a
ii
>0,i=1,2,…,n. 得证f的平方项的系数均大于零. (Ⅱ)用f正定的充要条件证:f=X
T
AX正定[*]存在可逆矩阵C,使得C
T
AC=E. A=(C
T
)
-1
C
-1
[*]|A|=|C
-1
|
2
>0. 或用反证法:若|A|≤0,则|A|=λ
1
λ
2
…λ
n
≤0,必有λ
i
≤0. 设λ
i
对应的特征向量为α
i
,则有Aα
i
=λ
i
α
i
,左乘[*],得 [*]α
i
>0,λ
i
≤0). 这和f是正定二次型矛盾,故|A|>0. 上述条件均不是f正定的充分条件,例 f=[*]=(x
1
+x
2
)
2
,有a
11
=a
22
=1>0,但f(1,-1)=0,f不正定. f=[*]=1>0,显然f不正定.
解析
转载请注明原文地址:https://jikaoti.com/ti/J4riFFFM
0
考研数学二
相关试题推荐
对联是中华语言独特的艺术形式,它要求两行文字字数相同,意义相关,词性相当,结构相称,对仗工整,如能藏典更佳。下列选项是以不同地方为题材所作的对联。其中最恰当的一项是()。
儒家是中国古代最有影响的学派,是由孔子创立的,后来逐步发展为以仁为核心的思想体系。儒家思想的经典著作很多,下列不是儒家经典的是()。
某画家从来不在其作品上标注日期,其作品的时间顺序现在才开始在评论文献中形成轮廓。最近将该画家的一幅自画像的时间定位为1930年一定是错误的,1930年时该画家已经63岁了,然而画中的年轻、黑发的男子显然是画家本人,但却绝不是63岁的男子。上面结论所依据的假
消化不良:长期的饮食不规律、爱吃刺激性食物、或者暴饮暴食,而导致的腹部不适的症状。根据上述定义,以下哪项不是消化不良的表现?()
A、 B、 C、 D、 C本题的图形规律是每组图形都是由两个直线图形和一个曲线图形组成,并且直线图形都是轴对称图形。
我国海拔最高、面积最大的自然保护区是()。
两个红色正方形面积分别是19962平方米和19932平方米,两个蓝色正方形面积分别是19972平方米和19922平方米。问红色正方形和蓝色正方形面积相差多少平方米?
已知累次积分I=(rcosθ,rsinθ)rdr,其中a>0为常数,则I可写成
计算二重积分I=|sin(x—y)|dxdy,其中D:0≤x≤2π,x≤y≤2π.
已知η是非齐次线性方程组Aχ=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次线性方程组Aχ=0的基础解系.证明:(Ⅰ)η,η+ξ1,η+ξ2,…,η+ξn-r,是Aχ=b的n-r+1个线性无关解;(Ⅱ)方程组Aχ=b的任一个解均可由η
随机试题
形而上学认为静止()。
Theroom______oftencleanedbythestudents.
下列哪项与原核生物DNA复制错误率低的原因有关
第一类杠杆的特点不包括
以下属于咨询(监理)工程师在施工过程中的质量控制范围的有()。
根据《合同法》,应当先履行债务的当事人,有确切证据证明对方()的,可以终止履行债务。
银行从业人员是一个较受公众关注的群体,银行个人理财从业人员在工作中要接受来自于()的监督。
社会工作研究的目的在于()。
根据学习的定义,下列属于学习的现象是()。
Whyare"HowTo"booksingreatdemandintheUnitedStates?
最新回复
(
0
)