首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设n>1,n元齐次方程组AX=0的系数矩阵为A= (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
设n>1,n元齐次方程组AX=0的系数矩阵为A= (1)讨论a为什么数时AX=0有非零解? (2)在有非零解时求通解.
admin
2016-10-21
31
问题
设n>1,n元齐次方程组AX=0的系数矩阵为A=
(1)讨论a为什么数时AX=0有非零解?
(2)在有非零解时求通解.
选项
答案
(1)用矩阵消元法,把第n行除以n移到第一行,其他行往下顺移,再第i行减第一行的i倍(i>1). [*] a=0时r(A)=1,有非零解. 下面设a≠0,对右边的矩阵继续进行行变换:把第2至n各行都除以a,然后把第1行减下面各行后换到最下面,得 [*] 于是当a=-n(n+1)/2时r(A)=n-1,有非零解. (2)n=0时AX=0与χ
1
+χ
2
+…+χ
n
=同解,通解为 c
1
(1.-1,0,…,0)
T
+c
2
(1,0,-2,…,0)
T
+…+c
n-1
(1,0,0,…,-1)
T
,c
i
,任意. a=-(n+1)/2时,通解为 c(1,2,3,…,n)
T
,c任意.
解析
转载请注明原文地址:https://jikaoti.com/ti/InzRFFFM
0
考研数学二
相关试题推荐
确定a,b,使得当x→0时x-(a+bcosx)sinx为阶数尽可能高的无穷小.
设f(x)=a1ln(1+x)+a2ln(1+2x)+…+anln(1+nx),其中a1,a2,…,an,为常数,且对一切x有|f(x)|≤|ex-1|.证明:|a1+2a2+…+nan|≤1.
设f(x),g(x)在区间[-a,a](a>0)上连续,g(x)为偶函数,且f(x)满足条件f(x)+f(-x)=A(A为常数)证明:∫-aaf(x)g(x)dx=A∫0ag(x)dx
设函数f(x)闭区间[a,b]上连续,在开区间(a,b)内可导,且f’(x)>0,若极限存在,证明:在(a,b)内存在与第二小题中ξ相异的点η,使得f’(η)(b2-a2)=∫abf(x)dx。
设g(x)>0为已知连续函数,在圆域D={(x,y)|x2+y2≤a2(a>0)}上计算二重积分,其中λ,μ为正常数。
设an为正项级数,下列结论中正确的是________。
极限是否存在?
求下列微分方程的通解。(ex+y-ex)dx+(ex+y+ey)dy=0
设y=(C1+C2x)e2x是某二阶常系数线性微分方程的通解,求对应的方程。
记方程组(I)和(Ⅱ)的系数矩阵分别是A和B.由于曰的每一行都是Ax=0的解,故ABT=0,那么BAT=(AB)T=0.因此,A的行向量是方程组(Ⅱ)的解.由于曰的行向量是(I)的基础解系,它们应线性无关,从而知r(B)=n.且由(I)的解的结构,知2
随机试题
新生儿初生时网织红细胞数0.05提示
土地登记代理机构的权利包括()。
CO2灭火系统主要用于扑救的火灾有( )。
下列选项中,()编制施工图预算所用人工、材料和机械台班的单价是适用于市场经济条件波动较大的情况的。
甲、乙因合同纠纷达成仲裁协议,甲选定A仲裁员,乙选定B仲裁员,另由仲裁委员会主任指定一名首席仲裁员,3人组成仲裁庭。仲裁庭在作出裁决时产生了两种不同意见。根据《仲裁法》的规定,仲裁庭应当采取的正确做法是()。
保险公司因()等原因而终止,则保险合同相应终止。
《中华人民共和国计量法实施细则》第二条规定:国家实行法定计量单位制度。国家法定计量单位的名称、符号和非国家法定计量单位的废除办法,按照国务院关于在我国统一实行法定计量单位的有关规定执行。法定计量单位的名称,除特别说明外,一般指法定计量单位的中文名称,用于叙
德育的过程是促进儿童()互动发展的过程。
胡萝卜、西红柿和其他一些蔬菜含有较丰富的β-胡萝卜素,这种胡萝卜素具有防止细胞癌变的作用。近年来提炼出的β-胡萝卜素被制成片剂并建议吸烟者服用,以防止吸烟引起的癌症。然而,意大利博洛尼亚大学和美国得克萨斯大学的科学家发现,经常服用β-胡萝卜素片剂的吸烟者反
Manyresidentsofapartmentcomplexesobjecttonoisyneighbors.
最新回复
(
0
)