首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
设随机变量X的分布函数为 其中参数α>0,β>1,设X1,X2,…,Xn为来自总体X的简单随机样本. (Ⅰ)当α=1时,求未知参数β的矩估计量; (Ⅱ)当α=1时,求未知参数β的最大似然估计量; (Ⅲ)当β=2时,求未知参
admin
2021-01-25
77
问题
设随机变量X的分布函数为
其中参数α>0,β>1,设X
1
,X
2
,…,X
n
为来自总体X的简单随机样本.
(Ⅰ)当α=1时,求未知参数β的矩估计量;
(Ⅱ)当α=1时,求未知参数β的最大似然估计量;
(Ⅲ)当β=2时,求未知参数α的最大似然估计量.
选项
答案
总体X的概率密度为: f(χ;α;β)=F′
X
(χ;α;β)=[*] (Ⅰ)α=1时,f(χ;α;β)=[*] ∴EX=∫
1
+∞
χ.β
-β-1
χdχ=[*], 令[*],得β的矩估计量为:[*]; (Ⅱ)α=1时,似然函数为 [*] ∴χ
1
,…,χ
n
>1时,lnL=nlβ-(β+1)ln(χ
1
…χ
n
), ∴[*]-ln(χ
1
…χ
n
),令[*]=0,解得β=[*] 故知卢的最大似然估计为[*] (Ⅲ)β=2时,X的概率密度为: [*] 故似然函数为: [*] 可见[*]>α时,α越大则L越大,为使L达最大,可取α=[*],故口的最大似然估计为[*].
解析
转载请注明原文地址:https://jikaoti.com/ti/IlaRFFFM
0
考研数学三
相关试题推荐
[2005年]设矩阵A=[aij]3×3满足A*=AT,其中A*为A的伴随矩阵,AT为A的转置矩阵,若a11,a12,a13为3个相等的正数,则a11为().
[2004年]设α1=[1,2,0]T,α2=[1,a+2,-3a]T,α3=[-1,-b-2,a+2b]T,β=[1,3,-3]T.试讨论当a,b为何值时,β不能由α1,α2,α3线性表示;
设总体X的概率密度为其中θ(0<θ<1)未知,X1,X2,…,Xn是来自总体X的简单随机样本,是样本均值.判断是否为θ2的无偏估计量,并说明理由.
设y=y(x)是由sin(xy)=确定的隐函数,求y’(0)和y"(0)的值.
(Ⅰ)证明拉格朗日中值定理:若函数f(x)在[a,b]上连续,在(a,6)内可导,则存在ξ∈(a,b),使得f(b)—f(A)=f’(ξ)(b—a)。(Ⅱ)证明:若函数f(x)在x=0处连续,在(0,δ)(δ>0)内可导,且f’(x)=A,则f+’(0)
证明曲线上任一点的切线的横截距与纵截距之和为2.
[2014年]设随机变量X,Y的概率分布相同,X的概率分布为且X与Y的相关系数求(X,Y)的概率分布;
下列命题正确的是().
议{un},{cn}为正项数列,证明:若对一切正整数n满足cnun-cn+1un+1,且发散,则un也发散;
(1998年)设有两条抛物线记它们交点的横坐标的绝对值为an。(I)求这两条抛物线所围成的平面图形的面积Sn;(Ⅱ)求级数的和。
随机试题
某机场工程的混凝土成本数据如下表所示。目标成本为504000元,实际成本为560320元,两者差额为56320元。问题:试述因素分析法的基本理论。
根据《水利水电工程标准施工招标资格预审文件》,资格预审方法应当在()中载明。
某上市公司最近1期经审计的净资产为1亿元,最近12个月下列诉讼和仲裁可以不披露的是()。[2016年11月真题]
期末发生的下列事项中,影响当年度利润表中营业利润的有( )。
位于市区的某电子设备生产企业,主要生产电脑显示器,拥有固定资产原值6500万元,其中房产原值4000万元,2008年发生以下业务:(1)销售显示器给某销售公司,开具增值税专用发票,按销售合同约定取得不含税销售额7000万元;购进原材料,取得增值税专用发票
在旅游团结束本地游览活动后,送团前一般由地陪与()商定出发时间。
胡锦涛同志2012年7月18日下午在人民大会堂同南非总统祖马举行会谈。胡锦涛就加强中由合作提出4点建}义。以下表述正确的是()。
交换下列积分的积分顺序:
考生文件夹下存在一个数据库文件“samp2.accdb”,里面已经设计好表对象“tCourse”、“tScore”和“tStud”,试按以下要求完成设计:创建一个查询,运行该查询后生成一个新表,表名为“tNew”,表结构包括“学号”、“姓名”、“性别”
Onemorning,Iwaswaitingatthebusstop,worriedabout【K1】______(be)lateforschool.Thereweremanypeoplewaitingattheb
最新回复
(
0
)