首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫01f(x)dx.
admin
2018-01-23
21
问题
设f(x)在[0,1]连续可导,且f(0)=0.证明:存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
选项
答案
因为f’(x)在区间[0,1]上连续,所以f’(x)在区间[0,1]上取到最大值M和最小值m,对f(x)-f(0)=f’(c)x(其中c介于0与x之间)两边积分得 ∫
0
1
f(x)dx=∫
0
1
f’(c)xdx, 由m≤f’(c)≤M得m∫
0
1
xdx≤∫
0
1
f’(c)xdx≤M∫
0
1
xdx, 即m≤2∫
0
1
f’(c)xdx≤M或m≤2∫
0
1
f(x)dx≤M, 由介值定理,存在ξ∈[0,1],使得f’(ξ)=2∫
0
1
f(x)dx.
解析
转载请注明原文地址:https://jikaoti.com/ti/ILKRFFFM
0
考研数学三
相关试题推荐
微分方程y″+4y=2x2在原点处与y=x相切的特解是__________.
差分方程yt一2yt-1=b(b为常数)的通解是().
证明方程xe2x-2x-cosx+x2/2=0有且仅有两个根.
设α1,α2,α3,α4为四维列向量组,且α1,α2,α3线性无关,α4=α1+α2+2α3.已知方程组[α1一α2,α2+α3,一α1+aα2+α3]X=α4有无穷多解.(1)求a的值;(2)用基础解系表示该方程组的通解.
设函数f(x)=(x—x0)nφ(x)(n为任意自然数),其中函数φ(x)当x=x0时连续.(1)证明f(x)在点x=x0处可导;(2)若φ(x)≠0,问函数f(x)在x=x0处有无极值,为什么?
设u=f(x,y)是连续可微函数,x=rcosθ,y=rsinθ.证明:
设f(x),g(x)在[a,b]上连续,在(a,b)内可导,证明:存在ξ∈(a,b),使得
设n阶矩阵A的各行元素之和均为零,且A的秩为n-1,则线性方程组AX=0的通解为__________.
设行列式已知1703,3159,975,10959都能被13整除,不计算行列式D,试证明D能被13整除.
随机试题
S7-200作为PROFIBUSDP从站时使用的模块是()。
何谓慢性肾功能不全?
肾结核合并对侧肾积水的原因有
控制帕金森病最有效的药物为
下列选项中,能治疗热性出血证的是
()是公司签发的证明股东所持股份的凭证。
()是指金融净资产达到600万元人民币及以上的银行客户。
决定有氧耐力训练效果的有效指标是()。
德育过程就是学生思想品德形成过程。
我国社会主义法律的本质包括()
最新回复
(
0
)