首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
设f(x)∈C[a,b],在(a,b)内二阶可导,且f’’(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫abφ(x)dx=1. 证明:∫abf(x)φ(x)dx≥f[∫abxφ(x)dx].
admin
2017-08-31
33
问题
设f(x)∈C[a,b],在(a,b)内二阶可导,且f
’’
(x)≥0,φ(x)是区间[a,b]上的非负连续函数,且∫
a
b
φ(x)dx=1.
证明:∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
选项
答案
因为f
’’
(x)≥0,所以有f(x)≥f(x
0
)+f
’
(x
0
)(x—x
0
),取x
0
=∫
a
b
xφ(x)dx,因为φ(x)≥0,所以aφ(x)≤xφ(x)≤bφ(x),又∫
a
b
φ(x)dx=1,于是有a≤∫
a
b
xφ(x)dx=x
0
≤b.把x
0
=∫
a
b
xφ(x)dx,代入f(x)≥f(x
0
)+f
’
(x
0
)(x—x
0
)中,再由φ(x)≥0,得f(x)φ(x)≥f(x
0
)φ(x)+f
’
(x
0
)[xφ(x)一x
0
φ(x)],上述不等式两边再在区间[a,b]上积分,得∫
a
b
f(x)φ(x)dx≥f[∫
a
b
xφ(x)dx].
解析
转载请注明原文地址:https://jikaoti.com/ti/IIVRFFFM
0
考研数学一
相关试题推荐
e-1/2
[*]
设幂级数在x=-4处条件收敛,则级数在x=一3处().
计算曲面积分(x3+z)dydz+(y3+x)dzdx+dxdy,其中∑是曲线L:(|x|≤1)绕z轴旋转一周所得到的曲面,取外侧.
设函数f(x,y)在区域D:x2+y2≤1上有二阶连续偏导数,且又Cr是以原点为心,半径为r的圆周,取逆时针方向,求
设α1,α2为齐次线性方程组AX=0的基础解系,β1,β2为非齐次线性方程组AX=b的两个不同解,则方程组AX=b的通解为().
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
在长为L的线段上任取两点,求两点之间距离的数学期望及方差.
设二阶常系数齐次线性微分方程以y1=e2x,y2=2e-x一3e2x为特解,求该微分方程.
设函数f(x)在区间[a,+∞)内连续,且当x>a时,f’(x)>l>0,其中l为常数.若f(a)<0,则在区间内方程f(x)=0的实根个数为()
随机试题
既然对同一认识对象,人们“仁者见仁,智者见智”,那就说明,认识是纯粹主观自生的。()
Mostyoungpeopleenjoyphysicalactivities,walking,cycling,football,ormountaineering.Thesewhohaveapassion【C1】____
患者,女性,22岁,行拔牙术注射麻醉药物时,出现头晕、恶心、胸闷、四肢无力等症状,查:血压90/60mmHg,脉搏65次/分,面部及口唇苍白。对该患者上述情况的正确处理是
A.防己黄芪汤B.猪苓汤C.五苓散D.实脾散E.真武汤
下列属于长期备用医嘱的是
以下关于选择混凝土运输浇筑方案原则的错误表述是( )。
《中华人民共和国老年人权益保障法》规定,每年农历的九月初九为()。
根据以下资料,回答以下题。2010年至2014年间,随着城乡居民收入水平提高,对外公务、商务和会展业的兴起,K省住宿餐饮业发展速度不断加快,规模持续扩大,形成了多种经济成分共同发展的多元化经营格局。K省的住宿服务企业可分为旅游饭店和一般
系统符号常量的定义可以通过______获得。
Firecanhelppeopleinmanyways.Butitcanbeverydangerous.Firecanheatwater,warmhouses,givelightandcook.Butfire
最新回复
(
0
)