首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设ɑ1,ɑ2,ɑ3,ɑ4为4维列向量,满足ɑ2,ɑ3,ɑ4线性无关,且ɑ1+ɑ3=2ɑ2. 令A=(ɑ1,ɑ2,ɑ3,ɑ4),β=ɑ1+ɑ2+ɑ3+ɑ4求线性方程组Ax=β的通解.
设ɑ1,ɑ2,ɑ3,ɑ4为4维列向量,满足ɑ2,ɑ3,ɑ4线性无关,且ɑ1+ɑ3=2ɑ2. 令A=(ɑ1,ɑ2,ɑ3,ɑ4),β=ɑ1+ɑ2+ɑ3+ɑ4求线性方程组Ax=β的通解.
admin
2019-08-26
51
问题
设ɑ
1
,ɑ
2
,ɑ
3
,ɑ
4
为4维列向量,满足ɑ
2
,ɑ
3
,ɑ
4
线性无关,且ɑ
1
+ɑ
3
=2ɑ
2
.
令A=(ɑ
1
,ɑ
2
,ɑ
3
,ɑ
4
),β=ɑ
1
+ɑ
2
+ɑ
3
+ɑ
4
求线性方程组Ax=β的通解.
选项
答案
先求Ax=0的基础解系. 由于α
2
,α
3
,α
4
线性无关,且α
1
=2α
2
—α
3
,得R(A)=3.又因为α
1
—2α
2
+α
3
+ 0·α
4
=0, 故Ax=0基础解系为(1,—2,1,0)
T
.再求Ax=β的一个特解. 由于β=α
1
+α
2
+α
3
+α
4
,故(1,1,1.1)
T
为一个特解.所以,Ax=β的通解为 (1,1,1,1)
T
+k(1,—2,l,0)
T
,k为常数.
解析
【思路探索】利用非齐次线性方程组解的结构求解.先求对应导出组的基础解系,再求一个特解.
【错例分析】本题的主要错误在于未能利用条件α
1
+α
3
=2α
2
:得到Ax=0的基础解系,未能利用β=
1
十α
2
+α
3
+α
4
得到Ax=β的特解.
转载请注明原文地址:https://jikaoti.com/ti/ICnRFFFM
0
考研数学三
相关试题推荐
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d—P),其中a,b,c,d,e都是正的常数,且d>b.求:这时需求对价格的弹性是多少?
设生产某产品的固定成本为c,边际成本C’(Q)=2aQ+b,需求量Q与价格P的函数关系为Q=(d—P),其中a,b,c,d,e都是正的常数,且d>b.求:产量Q为多少时,利润最大?最大利润是多少?
设A为n阶可逆矩阵,α为n维列向量,b为常数,记分块矩阵P=,其中A*是A的伴随矩阵,E为n阶单位矩阵.证明矩阵Q可逆的充分必要条件是αTA-1α≠b.
向量组α1=(1,一1,3,0)T,α2=(一2,1,a,1)T,α3=(1,1,一5,一2)T的秩为2,则a=___________.
已知α1=(a,a,a)T,α2=(一a,a,b)T,α3=(一a,一a,一b)T线性相关,则a,b满足关系式_________.
设向量组α,β,γ线性无关,α,β,δ线性相关,则
设A是n阶实反对称矩阵,x,y是实n维列向量,满足Ax=y,证明x与y正交.
设随机变量X和Y的联合分布函数为则随机变量X的分布函数F(x)为___________.
设随机变量X1与X2相互独立,其分布函数分别为则X1+X2的分布函数F(x)=
随机试题
解决行政组织中上下级冲突的常见方式是()
光票托收一般不用于【】的收取。
某房地产开发企业销售房地产的收人为3000万元,扣除项目金额为1500万元,则应缴土地增值税为()万元。
主要应用在现代高档写字楼中的空调系统是()。
设计图中注明的钢筋尺寸是()。
导游工作的服务性决定了游客的安全性是衡量导游工作好坏的标准。
爆竹声中一岁除,____________。(王安石《元日》)
根据自己的生物钟安排学习活动属于学习策略中的()。
假定你是公司职员李明,请给纽约的假日酒店(HolidayInnHotel)写一封邮件,替鲍勃.霍夫曼(BobHoffman)先生预订5月10日至15日的标准间一间。付款方式为信用卡支付,并期待对方尽快回复。
Therearethreekindsofgoals:short-term,medium-rangeandlong-termgoals.Short-rangegoalsarethosethatusuallydealwith
最新回复
(
0
)