首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有n元二次型f(x1,x2 ,……xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2 ,……xn)为正定二次型.
设有n元二次型f(x1,x2 ,……xn)=(x1+a1x2)2+(x2+a2x3)2+…+(xn+anx1)2,其中ai(i=1,2,…,n)为实数.试问当a1,a2,…,an满足何种条件时,二次型f(x1,x2 ,……xn)为正定二次型.
admin
2016-01-11
37
问题
设有n元二次型f(x
1
,x
2
,……x
n
)=(x
1
+a
1
x
2
)
2
+(x
2
+a
2
x
3
)
2
+…+(x
n
+a
n
x
1
)
2
,其中a
i
(i=1,2,…,n)为实数.试问当a
1
,a
2
,…,a
n
满足何种条件时,二次型f(x
1
,x
2
,……x
n
)为正定二次型.
选项
答案
由题设知,对任意的实数x
1
,x
2
,……x
n
,有f(x
1
,x
2
,……x
n
)≥0,其中等号成立当且仅当 [*] 所以当1+(一1)
n+1
a
1
,a
2
…a
n
≠0时,对任意n个不全为零的实数x
1
,x
2
,……x
n
,都有f(x
1
,x
2
,……x
n
)>0,即当a
1
a
2
…a
n
≠(一1)
n
时,二次型f(x
1
,x
2
,……x
n
)为正定二次型.
解析
本题考查正定二次型的判定方法.将二次型f(x
1
,x
2
,……x
n
)的正定性问题转化为齐次线性方程组仅有零解的问题进行解决.
转载请注明原文地址:https://jikaoti.com/ti/I9DRFFFM
0
考研数学二
相关试题推荐
设A是n阶矩阵,α1,α2,…,αn是n维列向量,且αn≠0,若Aα1=α2,Aα2=α3,……,Aαn-1=αn,Aαn=0.(1)证明:α1,α2,…,αn线性无关;(2)求A的特征值与特征向量.
设方程组为矩阵A的分别属于特征值λ11,λ2=-2,λ3=-1的特征向量.(1)求A;(2)求|A*+3E|.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
设函数f(x)在[0,1]上连续,(0,1)内可导,且证明在(0,1)内存在一点,使fˊ(c)=0.
已知抛物线y=px2+qx(其中p<0,q>0)在第一象限内与直线x+y=5相切,且此抛物线与x轴所围成的平面图形的面积为S.(Ⅰ)问p和q何值时,S达到最大值?(Ⅱ)求出此最大值.
设二次型f(x1,x2,x3)=XTAX经过正交变换化为标准形f=2y12-y22-y32,又A*α=α,其中α=(1,1,﹣1)T.(Ⅰ)求矩阵A;(Ⅱ)求正交矩阵Q,使得经过正交变换X=QY,二次型f(x1,x2,x3)=XTAX化为标准形.
设函数f(x)是以T为周期的连续函数.(Ⅰ)证明:∫0x(t)dt可以表示成一个以T为周期的连续函数与kx之和,并求常数k;(Ⅱ)计算∫0xf(t)dt.
设A为3阶实对称矩阵,β=(3,3,3)T,方程组Ax=β的通解为k1(-1,2,-1)T+k2(0,-1,1)T+(1,1,1)T(k1,k2为任意常数).求正交矩阵Q,使得Q-1AQ=A.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
随机试题
MillionsofAmericansandforeignersseeG.I.Joeasamindlesswartoy,thesymbolofAmericanmilitaryadventurism,butthat’s
有关微生物的描述错误的是
一位中年男性患有冠心病和高血压病已5年。以现代医学模式观,冠心病是属于哪一类疾病
下列关于产品责任的表述中哪项是正确的?()
甲企业生产某单一产品,并且只拥有A、B、C三家工厂。三家工厂分别位于三个不同的国家,而三个国家又位于三个不同的洲。工厂A生产一种组件,由工厂B或者C进行组装,最终产品由B或者C销往世界各地,工厂B的产品可以在本地销售,也可以在C所在洲销售(如果将产品从B运
教育的生机与活力,就在于促进()
在一个周长8π厘米的圆中,剪一个最大的正六边形,则六边形的边长是________厘米,面积是________平方厘米。
公文行文制度的核心是()。
下列关于事业单位与行政机关的异同,说法错误的是()。
ThismonthSingaporepassedabillthatwouldgivelegalteethtothemoralobligationtosupportone’sparents.CalledastheM
最新回复
(
0
)