首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得 QTAQ=∧. (3)
设3阶实对称矩阵A的各行元素之和都为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T都是齐次线性方程组AX=0的解. (1)求A的特征值和特征向量. (2)求作正交矩阵Q和对角矩阵∧,使得 QTAQ=∧. (3)
admin
2019-02-26
15
问题
设3阶实对称矩阵A的各行元素之和都为3,向量α
1
=(-1,2,-1)
T
,α
2
=(0,-1,1)
T
都是齐次线性方程组AX=0的解.
(1)求A的特征值和特征向量.
(2)求作正交矩阵Q和对角矩阵∧,使得
Q
T
AQ=∧.
(3)求A及[A-(3/2)E]
6
.
选项
答案
(1)条件说明A(1,1,1)
T
=(3,3,3)
T
,即α
0
=(1,1,1)
T
是A的特征向量,特征值为3.又α
1
,α
2
都是AX=0的解说明它们也都是A的特征向量,特征值为0.由于α
1
,α
2
线性无关,特征值0的重数大于1.于是A的特征值为3,0,0. 属于3的特征向量:cα
0
,c≠0. 属于0的特征向量:c
1
α
1
+c
2
α
2
c
1
,c
2
不都为0. (2)将α
0
单位化,得η
0
=[*] 对α
1
,α
2
作施密特正交化,得 [*] 作Q=(η
0
,η
1
,η
2
),则Q是正交矩阵,并且 Q
T
AQ=Q
-1
AQ=[*] (3)建立矩阵方程A(α
0
,α
1
,α
2
)=(3α
0
,0,0),用初等变换法求解: 得A=[*] 由Q
-1
AQ=[*] 得A=[*] 于是A-(3/2)E=[*] [A-(3/2)E]
6
=(3/2)
6
E.
解析
转载请注明原文地址:https://jikaoti.com/ti/I6oRFFFM
0
考研数学一
相关试题推荐
若x→0时,(1-ax2)1/4-1与xsinx的等价无穷小,则a=________.
设函数f(x)=的导函数在x=0处连续,则参数λ的取值范围为___________.
设数列{an}单调递减,an=0,Sn=ak(n=1,2,...)无界,则幂级数an(x-1)n的收敛域是___________.
平面π:Ax+By+z+D=0被柱面x2+4y2=4所截得的面积为_______.
当陨石穿过大气层向地面高速坠落时,陨石表面与空气摩擦产生的高温使陨石燃烧并不断挥发,实验证明,陨石挥发的速率(即体积减少的速率)与陨石表面积成正比,现有一陨石是质量均匀的球体,且在坠落过程中始终保持球状.若它存进入大气层开始燃烧的前3s内,减少了体积的,
设f(x)二阶连续可导,g(x)连续,且f’(x)=lncosx+∫0xg(x—t)dt,则().
设二阶线性常系数齐次微分方程y’’+by’+y=0的每一个解y(x)都在区间(0,+∞)上有界,则实数b的取值范围是()
设u(x,y)在平面有界闭区域D上具有二阶连续偏导数,且,则u(x,y)的()
设n阶矩阵A和B满足A+2B=AB。(Ⅰ)证明:A-2E为可逆矩阵,其中E为n阶单位矩阵;(Ⅱ)证明:AB=BA;(Ⅲ)已知B=,求矩阵A。
设A=,判断A是否可逆,若A可逆,求A-1。
随机试题
催化剂中毒后经适当处理可使催化剂的活性恢复,这种中毒称为暂时性中毒。()
由缺血性肌挛缩造成的畸形是
国家对药品实行品种保护制度的是不得在市场销售的是
可以引起新生儿高胆红素血症的药物是
原发性肝癌病人最突出的体征是
简述职业安全卫生保护费用的分类。
分析周昉的《簪花仕女图》。
国务院办公厅印发的《关于推动中央企业结构调整与重组的指导意见》,明确了下一阶段推进中央企业结构调整和重组的重点工作,《意见》最大的亮点是由之前的“三个一批”升级为“四个一批”。下列属于新升级的一个是()。
与正规式(a|b)*等价的正规式为______。
Scientistshavecomeupwithatheoryforwhytimeflieswhenyouarehavingfunanddragswhenyouarebored.Scanshaves
最新回复
(
0
)