首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令un=f(n)(n=1,2,…),则下列结论正确的是( )
admin
2017-01-21
52
问题
设函数f(x)在(0,+∞)上具有二阶导数,且f"(x)>0,令u
n
=f(n)(n=1,2,…),则下列结论正确的是( )
选项
A、若u
1
>u
2
,则{u
n
}必收敛
B、若u
1
>u
2
,则{u
n
}必发散
C、若u
1
<u
2
,则{u
n
}必收敛
D、若u
1
<u
2
,则{u
n
}必发散
答案
D
解析
本题依据函数f(x)的性质选取特殊的函数数列,判断数列{u
n
=f(n)}的敛散性。
取f(x)=—lnx,f"(x)=
>0,u
1
=—ln1=0>—ln2=u
2
,而f(n)=—lnn,发散,则可排除A;
取
收敛,则可排除B;
取f(x)=x
2
,f"(x)=2 >0,u
1
=1<4=u
2
,而f(n)=n
2
发散,则可排除C;故选D。
事实上,若u
1
<u
2
,则
=f’(ξ
1
)>0。而对任意x∈(ξ
1
,+∞),由f"(x)>0,所以f’(x)>f’(ξ
1
)>ξ
1
∈(1,2)>0,对任意ξ
2
∈(ξ
1
,+∞),f(x)=f(ξ
1
)+f’(ξ
2
)(x—ξ
1
)→+∞(x→+∞)。故选D。
转载请注明原文地址:https://jikaoti.com/ti/HySRFFFM
0
考研数学三
相关试题推荐
利用全微分求下述函数在给定点的近似值:(1)ln(x-3y),(9,06);(2)x2y3z4,(05,0.9,01).
设F(x)=F(x)g(x),其中函数f(x),g(x)在(-∞,+∞)内满足以下条件:f’(x)=g(x),g’(x)=f(x)且f(0)=0,f(x)+g(x)=2ex.求F(x)的表达式.
函数f(x)在[0,+∞)上可导,f(0)=1,且满足等式证明:当x≥0时,成立不等式e-x≤f(x)≤1.
设函数f(x)在区间[-1,1]上连续,则x=0是函数g(x)=的
计算曲面积分,∑为:
假设:(1)函数y=f(x)(0≤x<+∞)满足条件f(0)=0和0≤f(x)≤ex-1;(2)平行于y轴的动直线MN与曲线y=f(x)和y=ex-1分别相交于点P1和P2;(3)曲线y=f(x)、直线MN与x轴所围封闭图形的面积S恒等于线段P1P2的
假设曲线l1:y=1-x2(0≤x≤1)与x轴,y轴所围成区域被曲线l2:y=ax2分为面积相等的两部分,其中a是大于零的常数,试确定口的值.
非齐次线性方程组Ax=b中未知量个数为n,方程个数为m,系数矩阵A的秩为r,则
0由级数收敛知,因为级数收敛,因此其通项趋于0.
随机试题
调查设计的内容最重要的是
最常见的急性肾衰的病因是
吸气时出现脉搏显著减弱或消失的现象可见于
葡萄球菌肺炎多见于肺炎支原体肺炎多见于
指数跟踪的方法不包括()。
发散思维
王国维《人间词话》中提到的“三种境界”中的第二层境界是()。
近些年尽管形形色色的消费维权案例屡屡见诸各类媒体,但许多人实际上仍然不清楚如何维权。有的根本就不清楚自己的权益何在,有的则不知道维权途径,一部分知道权益受到侵害而且也了解维权手段的人则往往出于对维权成本的恐惧而无奈放弃。说到底,消费者的维权意识还是有点淡薄
某单位财务处请小张设计《经费联审结算单》模板,以提高日常报账和结算单审核效率。请根据考生文件夹下“Word素材1.docx”和“Word素材2.xlsx”文件完成制作任务,具体要求如下:设置《XX研究所科研经费报账须知》的第一行格式为小三、黑体、加粗,
Peopleborninautumnlivelongerthanthoseborninspringandare【C1】______likelytofallchronicallyillwhentheyareolder,
最新回复
(
0
)