首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
设二维随机变量(X,Y)的密度函数为 (1)问X,Y是否独立? (2)分别求U=X2和V=Y2的密度函数fU(u)和fV(v),并指出(U,V)服从的分布; (3)求P(U2+V2≤1).
admin
2016-12-16
29
问题
设二维随机变量(X,Y)的密度函数为
(1)问X,Y是否独立?
(2)分别求U=X
2
和V=Y
2
的密度函数f
U
(u)和f
V
(v),并指出(U,V)服从的分布;
(3)求P(U
2
+V
2
≤1).
选项
答案
(1)f
X
(x)=∫
一∞
+∞
f (x,y)dy=[*] f
Y
(Y)=∫
一∞
+∞
f (x,y)dx=[*] 由于f(x,y)=f
X
(x).f
Y
(y),(x,y)∈R
2
, 故X,Y相互独立. (2)F
U
(u)=P(U≤u)=P(X
2
≤u)=[*]f
X
(x)dx [*] 由于X,Y相互独立,所以U=X
2
和V=Y
2
也相互独立,从而(U,V)的密度函数为 f
UV
(uυ)=f
U
(u) f
V
(υ)=[*] 由此表明,(U,V)服从区域D
UV
={(u,υ)|0≤u≤1,0≤υ≤1}上的均匀分布. (3)由(2)可知(记D={(u,υ)|u
2
+υ
2
≤1,u≥0,υ≥0}) P(U
2
V
2
≤1)=[*]
解析
因f(x,y)的非零值部分可分解为两个仅与x、仅与y有关的函数率积g
1
(x)g
2
(y),且f(x,y)取非零值的区域也可分解出两个仅与x,与y有关的区间,据此,从直观上可看出X,Y独立,因而其函数X
2
和Y
2
也独立,求出边缘密度f
X
(x),f
Y
(y),再求出U与V的分布,利用独立性即可求得(U,V)的分布.
转载请注明原文地址:https://jikaoti.com/ti/HXSRFFFM
0
考研数学三
相关试题推荐
用对数求导法求下列函数的导数:
试问:a为何值时,函数f(x)=asinx+1/3sin3x在x=π/3处取得极值?它是极小值还是极大值?并求此极值.
设可微函数z=f(x,y)满足方程证明:f(x,y)在极坐标系中只是θ的函数.
设f(x),g(x)是C(2)类函数,证明:函数u=f(s+at)+g(s-at)满足波动方程
计算曲线积分,其中L是以点(1,0)为中心,半径为R的圆周(k>1)取逆时针方向.
设u=f(x,y)是C(2)类函数,又x=escost,y=essint,证明:
设A为3阶矩阵,|A|=3,A*为A的伴随矩阵.若交换A的第1行与第2行得矩阵B,则|BA*|=__________.
设随机变量X服从正态分布N(0,1),对给定的α∈(0,1),数uα满足P{X>uα}=α,若P{|x|<x}=α,则x等于().
求∫x2arctanxdx.
随机试题
辛亥革命失败的原因及教训。
计算机采用二进制与________无关。
A.清宫术B.子宫切除术C.患侧附件切除术D.化疗E.放疗
有关头颅正位摄影的叙述,错误的是
浅Ⅱ°和深Ⅱ°烧伤的共同特点是
钢结构焊接产生热裂纹的主要原因有()。
股权投资基金选择合适的时机,将其在被投资企业的股权变现,由股权形态转化为具有流动性的现金收益,以实现资本增值,或及时避免和降低损失。这是投资进程中的()环节。
瑶瑶快要结婚了。她走在上班的路上,感到花儿在对她微笑,鸟儿在向她报喜。这种情绪状态是()。
设f(x)二阶可导,f(1)=0,令φ(x)=x2f(x),证明:存在ξ∈(0,1),使得φ″(ξ)=0.
A、It’satraditionalEuropeanfestival.B、ItfallsonthedaybeforeEaster.C、Thetraditionalcelebrationisdecoratingeggs.D
最新回复
(
0
)