首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
设C1,C2是任意两条过原点的曲线,曲线C介于C1,C2之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ2,C1的方程是y=χ2,求曲线C2的方程.
admin
2019-08-12
101
问题
设C
1
,C
2
是任意两条过原点的曲线,曲线C介于C
1
,C
2
之间,如果过C上任意一点P引平行于χ轴和y轴的直线,得两块阴影所示区域A,B有相等的面积,设C的方程是y=χ
2
,C
1
的方程是y=
χ
2
,求曲线C
2
的方程.
选项
答案
由题设C:y=χ
2
,C
1
:y=[*]χ
2
,令C
2
:χ=f(y),P点坐标为(χ,y),则 [*] 所以[*], 因为P∈C,所以有∫
0
y
f(y)dy=[*] 即[*],两边对χ求导,得2χ.f(χ
2
)=[*]χ
2
,即f(χ
2
)=[*]χ. 从而C
2
的方程为χ=f(y)=[*],即y=[*]χ
2
. [*]
解析
转载请注明原文地址:https://jikaoti.com/ti/HVERFFFM
0
考研数学二
相关试题推荐
(90年)已知=0,其中a,b是常数.则
(87年)求(a,b是不全为零的非负常数).
设n维行向量α=,矩阵A=I-αTα,B=I+2αTα,其中I为n阶单位矩阵,则AB=
设3阶实对称矩阵A的各行元素之和均为3,向量α1=(-1,2,-1)T,α2=(0,-1,1)T是线性方程组Ax=0的两个解,求出矩阵A及(A-E)6.
设a1,a2,…,an是一组n维向量,已知n维单位坐标向量e1,e2,…,en能由它们线性表示,证明α1,α2……αn线性无关.
以下三个命题:①若数列{un|收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.
设y=f(x)是区间[0,1]上的任一非负连续函数。试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积等于在区间[x0,1]上以y=f(x)为曲边的梯形面积;
[*]由密度函数求分布函数可以用积分法,但当涉及分段密度函数时一定要分清需要积分的区域,故一般先画个草图(图3-2),标出非零的密度函数,然后分不同情况观察(X,Y)落在给定的(x,y)左下方平面区域内的概率,从而计算F(x,y)的值。在计算随机变量满足某
设函数f(x)在[a,b]上可积,φ(x)=∫axf(t)dt,则下列说法正确的是()
随机试题
根据AJCC调查工期恶性黑色素瘤患者5年生存率约为
酶能加速化学反应的进行,其原理是
原发性肾小球疾病的发病机制,多数是
下列说法正确的是:()
按招标投标法的规定,建设工程项目中可以不进行招标的是()。
某房地产企业同时有两个房地产项目的投资机会,每个项目又有若干个投资方案可供选择。在资金有限的情况下,该企业选择的类型属于()型方案。
(2013年)根据国内信用证法律制度的规定,开证行收到受益人开户行寄交的委托收款凭证、单据等材料,并与信用证条款核对无误后,若发现开证申请人交存的保证金和存款账户余额不足以支付信用证金额的,开证行应采取的正确做法是()。
2019年1月2日,习近平在《告台湾同胞书》发表40周年纪念会上的讲话中指出,“祖国必须统一,也必然统一。”“两岸中国人、海内外中华儿女理应共担民族大义、顺应历史大势,共同推动两岸关系和平发展、推进祖国和平统一进程。”维护和推进祖国统一需要做到
【S1】【S6】
Directions:Forthispart,youareallowed30minutestowriteacompositionwiththetitleofLivingExpenditureofaDeveloped
最新回复
(
0
)