首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是( )
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A2α线性无关,而A3α=3Aα一2A2α,那么矩阵A属于特征值λ=一3的特征向量是( )
admin
2018-02-07
38
问题
已知三阶矩阵A与三维非零列向量α,若向量组α,Aα,A
2
α线性无关,而A
3
α=3Aα一2A
2
α,那么矩阵A属于特征值λ=一3的特征向量是( )
选项
A、α。
B、Aα+2α。
C、A
2
α一Aα。
D、A
2
α+2Aα一3α。
答案
C
解析
因为A
3
α+2A
2
α一3Aα=0。故
(A+3E)(A
2
α一Aα)=0=0(A
2
α一Aα)。
因为α,Aα,A
2
α线性无关,必有A
2
α一Aα≠0,所以A
2
α一Aα是矩阵A+3E属于特征值λ=0的特征向量,即矩阵A属于特征值λ=一3的特征向量。所以应选C。
转载请注明原文地址:https://jikaoti.com/ti/HSdRFFFM
0
考研数学二
相关试题推荐
A、 B、 C、 D、 C
函数yx=A2x+8是下面某一差分方程的通解,这个方程是[].
求微分方程ydx+(x-3y2)dx=0满足条件y|x=1=1的解y。
求微分方程y’=y(1-x)/x的通解。
设f(x)是区间[0,+∞)上具有连续导数的单调增加函数,且f(0)=1.对任意的t∈[0,+∞),直线x=0,x=t,曲线y=f(x)以及x轴所围成的曲边梯形绕x轴旋转一周生成一旋转体,若该旋转体的侧面面积在数值上等于其体积的2倍,求函数f(x)的表达式
设A=(aij)是3阶非零矩阵,|A|为A的行列式,Aij为aij的代数余子式.若aij+Aij=0(i,j=1,2,3),则|A|=__________.
设n元线性方程组Ax=b,其中A=,x=(x1,…,xn)T,b=(1,0,…,0)T.(Ⅰ)证明行列式|A|=(n+1)an;(Ⅱ)a为何值时,方程组有唯一解?求x1;(Ⅲ)a为何值时,方程组有无穷多解?求通解.
考虑二次型f=x12+4x22+4x32+2λx1x2-2x1x3+4x2x3,问λ取何值时,f为正定二次型.
设3阶矩阵A的特征值为2,3,λ.若行列式|2A|=-48,则λ=________.
随机试题
______既能在阳地生长,也能在较阴的地方生长,只是不同种类植物耐阴的程度不同而已。
血液缓冲系统中
常用来识别造血干细胞/祖细胞的细胞表面标志是
某项目估计建设投资为1000万元,全部流动资金为200万元,建设当年即投产并达到设计生产能力,各年净收益均为2707i元。则该项目的静态投资回收期为()年。
下列关于湿式报警器启动后报警管路不排水的故障分析,最有可能的原因时()。
中国与西方的认识方式、思维逻辑乃至整体的文化观念,存在这样那样的差异。比如,西方式的执着,可能推衍出渐进的认识,强调主体与客体的关系,强调对象描述的精确性;中国式的洒落,则通向了圆融和体悟,描述对象时往往在清晰中又带有某种模糊。但二者并没有孰优孰劣,孰是孰
青椒:黄瓜
鼓舞对于()相当于()对于捏造
垄断资本向世界范围扩展的基本形式有()
设A为三阶矩阵,ξ1,ξ2,ξ3是三维线性无关的列向量,且的列向量,且Aξ1=一ξ1+2ξ2+2ξ3,Aξ2=2ξ1一ξ2一2ξ3,Aξ3=2ξ1一2ξ2一ξ3.(1)求矩阵A的全部特征值;(2)求|A*+2E|.
最新回复
(
0
)