首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
已知η是Ax=b的一个特解,ξ1,ξ2,…,ξn-r是对应齐次方程组Ax=0的基础解系,证明: η,η+ξ1,η+ξ2,…,η+ξn-r是Ax=b的n一r+1个线性无关解;
admin
2014-04-16
39
问题
已知η是Ax=b的一个特解,ξ
1
,ξ
2
,…,ξ
n-r
是对应齐次方程组Ax=0的基础解系,证明:
η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n一r+1个线性无关解;
选项
答案
[*] A(η+ξ
i
)=Aη=b,i=0,1,2,…,n一r,(其中ξ
0
=0),故η+ξ
i
,i=0,1,2,…,n一r均是Ax=b的解向量.设有数k
0
,k
1
,k
2
,…,k
n-r
,使得k
0
η+k
1
(η+ξ
1
)+k
2
(η+ξ
2
)+…+k
n-r
(η+ξ
n-r
)=0,(*)(*)式左乘A,得k
0
Aη,+k
1
A(η+ξ
1
)+k
2
A(η+ξ
2
)+…+k
n-r
A(η+ξ
n-r
)=0,整理得(k
0
+k
1
+…+k
n-r
)b=0,其中b≠0.故k
0
+k
1
+…+k
n-r
=0,(**)代入(*)式,得k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0.因ξ
1
,ξ
2
,…,ξ
n-r
导一是对应齐次方程组的基础解系,线性无关,得k
i
=0,i=1,2,…,n-r代入(**)式,得k
0
=0,从而有η,η+ξ
1
,η+ξ
2
,…,η+ξ
n-r
是Ax=b的n一r+1个线性无关解向量.
解析
转载请注明原文地址:https://jikaoti.com/ti/HKDRFFFM
0
考研数学二
相关试题推荐
(00年)设函数f(χ)在点χ=a处可导,则函数|f(χ)|在点χ=a处不可导的充分条件是【】
(98年)设周期函数f(χ)在(-∞,+∞)内可导,周期为4,又=-1,则曲线y=f(χ)在点(5,f(5))处的切线斜率为【】
设0<P(A)<1,0<P(B)<1,P(A|B)+P()一1,则事件A和B
A、 B、 C、 D、 C
A、 B、 C、 D、 D
[2006年]设非齐次线性微分方程y’+p(x)y=q(x)有两个不同的解y1(x),y2(x),c为任意常数,则该方程的通解是().
(1998年)差分方程2yt+1+10yt一5t=0的通解为________。
(16年)已知函数f(χ)满足=2,则f(χ)=_______.
设A=,B为三阶非零矩阵,为BX=0的解向量,且AX=α3有解,(Ⅰ)求常数a,b;(Ⅱ)求BX=0的通解。
设f(x)连续,且f(1)=0,f’(1)=2,求极限。
随机试题
以下哪项不属于MRI检查比X线和CT检查的优势?()
重大危险源评价以()作为评价对象。
美国通用电气公司是美国、也是世界上最大的电器和电子设备制造公司,它的产值占美国电工行业全部产值的1/4左右。通用电气公司的总部位于美国康涅狄格州费尔菲尔德市。GE公司由多个多元化的基本业务集团组成,如果单独排名,有13个业务集团可名列《财富》杂志500强。
日本的首都东京,时差上比北京时间早()小时。
已知数列{an},a2=2,数列{bn}为等差数列,bn=an+2一an一n,且b2=一1,b5=5,则a10=__________.
【2015年安徽.简答】新时期班主任工作的主要内容有哪些.
个人奖励的对象是各级公安机关在职的人民警察。()
十八大报告指出,要确保到2025年实现全面建成小康社会的宏伟目标。()
(中国人大2011)我国货币当局资产负债中的“储备货币”就是指()。
若要把窗体上命令按钮Command1的状态设置为不可用,应该执行的命令是( )。
最新回复
(
0
)