首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
已知三元二次型xTz的平方项系数都为0,α=(1,2,一1)T满足Aα=2α. ①求xTAx的表达式. ②求作正交变换x=Qy,把xTAx化为标准二次型.
admin
2016-07-29
46
问题
已知三元二次型x
T
z的平方项系数都为0,α=(1,2,一1)
T
满足Aα=2α.
①求x
T
Ax的表达式.
②求作正交变换x=Qy,把x
T
Ax化为标准二次型.
选项
答案
[*] 得2a一b=2,a一c=4,b+2c=一2,解出a=b=2,c=一2.此二次型为4x
1
x
2
+4x
1
x
3
—4x
2
x
3
. ②先求A特征值 [*] 于是A的特征值就是2,2,一4.再求单位正交特征向量组.属于2的特征向量是(A一2E)x=0的非零解. [*] 得(A一2E)x=0的同解方程组:x
1
一x
2
一x
3
=0.显然β
1
:(1,l,0)
T
是一个解,设第二个解为β
2
=(1,一l,c)
T
(这样的设定保证了两个解是正交的!),代入方程得c=2,得到属于特征值2的两个正交的特征向量β
1
,β
2
.再把它们单位化:记η
1
:β
1
/||β
1
||=[*] η
2
=β
2
/||β
2
||=[*] 属于一4的特征向量是(A+4E)x=0的非零解.求出β
3
=(1,一1,一1)
T
是一个解,单位化:记 η
3
=β
3
/||β
3
||=[*] 则η
1
,η
2
,η
3
是A的单位正交特征向量组,特征值依次为2,2,一4. 作正交矩阵Q=(η
1
,η
2
,η
3
),则Q
一1
AQ是对角矩阵,对角线上的元素为2,2,一4.作正交变换x=Qy,它把f(x
1
,x
2
,x
3
)化为2y
1
2
+2y
2
2
一4y
3
2
.
解析
转载请注明原文地址:https://jikaoti.com/ti/HIxRFFFM
0
考研数学三
相关试题推荐
加工一个产品要经过三道工序,第一、二、三道工序不出废品的概率分别为0.9、0.95、0.8,若假定各工序是否出废品是独立的,求经过三道工序生产出的是废品的概率.
在利用古典概型计算概率时,选择正确的样本空间是关键.比如,考虑一个投掷两枚均匀硬币的试验,其样本空间可以有两种表示.(1)如果在试验中没有区分这两枚硬币,也许是因为这两枚硬币完全相同,并且将两枚硬币同时投掷;或者是因为我们观察投掷结果时并不关心哪
已知二次型f(x1,x2,x3)的矩阵A有三个特征值1,-1,2,该二次型的规范形为________.
下列反常积分是否收敛?如果收敛求出它的值:
试求常数a和b的值,使得
设A与B均为n,阶矩阵,且A与B合同,则().
已知f(x)是周期为5的连续函数,它在x=0的某个邻域内满足关系式f(1+sinx)-3f(1-sinx)=8x+a(x).其中a(x)是当x—0时比x高阶的无穷小,且f(x)在x=1处可导,求曲线y=f(x)在点(6,f(6))处的切线方程.
函数f(x)=[丨x丨sin(x-2)]/[x(x-1)(x-2)2]存下列哪个区间内有界.
设X,Y是相互独立的随机变量,其分布函数分别为FY(x)、FY(y),则Z=min(X,Y)的分布函数是().
设总体X的概率密度为其中θ为未知参数且大于零.X1,X2,…,Xn为来自总体X的简单随机样本.求θ的最大似然估计量.
随机试题
从攻击角度来看,Kerberos的局限性体现出的问题有
缺铁性贫血治疗最重要的是
尿沉淀中找到移形上皮癌细胞,下列不可考虑的情况是
实现下丘脑与神经垂体之间的功能联系,依靠
属于糖尿病微血管病变的是
(2006)空气的初始容积V1=2m3、压力p1=0.2MPa、温度t1=40℃,经某一过程被压缩为V2=0.5m3,p2=1MPa。该过程的多变指数是()。
世界发达地区的城市化在______达到高峰。
有限责任公司均可以发行公司债券。()
2010~2015年,中国国际出口带宽增速最高的年份,其增量比增速最低的年份的增量:
为了使窗体的大小可以改变,必须把它的BorderStyle属性设置为
最新回复
(
0
)