首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设二次型f(x1,x2,x3) =2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT;
设二次型f(x1,x2,x3) =2(a1x1+a2x2+a3x3)2+(b1x1+b2x2+b3x3)2,记 证明二次型f对应的矩阵为2ααT+ββT;
admin
2016-01-11
45
问题
设二次型f(x
1
,x
2
,x
3
)
=2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
,记
证明二次型f对应的矩阵为2αα
T
+ββ
T
;
选项
答案
记x=(x
1
,x
2
,x
3
)
T
,由于f(x
1
,x
2
,x
3
) =2(a
1
x
1
+a
2
x
2
+a
3
x
3
)
2
+(b
1
x
1
+b
2
x
2
+b
3
x
3
)
2
[*] =2x
T
(αα
T
)x+x
T
(ββ
T
)x =x
T
(2αα
T
+ββ
T
)x,又(αα
T
+ββ
T
)
T
=(2αα
T
)
T
+(ββ
T
)
T
=2αα
T
+ββ
T
,所以二次型f对应的矩阵为2αα
T
+ββ
T
.
解析
本题考查抽象二次型化标准形的综合题.
转载请注明原文地址:https://jikaoti.com/ti/H9DRFFFM
0
考研数学二
相关试题推荐
讨论方程组的解的情况,在方程组有解时求出其解,其中a,b为常数.
证明:r(A)=r(ATA).
设A,B,C,D都是,n阶矩阵,r(CA+DB)=n.(1)证明:r=n;(2)设ξ1,ξ2,……,ξr与η1,η2,…,ηs分别为方程组AX=0与BX=0的基础解系,证明:ξ1,ξ2,……,ξr,η1,η2,…,ηs线性无关.
设A=且存在三阶非零矩阵B,使得AB=O,则α=________,b=________.
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2,则下列命题正确的是().
设A是三阶矩阵,α1,α2,α3为3个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.(1)求矩阵A的特征值;(2)判断矩阵A可否对角化.
设A为m×n阶实矩阵,且r(A)=n.证明:ATA的特征值全大于零.
二次型f(x1,x2,x3)=x12+x22+x32+x1x2+x1x3+x2x3的规范形为()
设在点处,函数f(x,y)=x2+(y-1)2(x≠0)在条件=1(a>0,b>0)下取得最小值,求a,b的值.
设某企业生产一种产品,其成本C(Q)=-16Q2+100Q+1000,平均收益=a一(a>0,0<b<24),当边际收益MR=44,需求价格弹性Ep=时获得最大利润,求获得最大利润时产品的产量及常数a与b的值.
随机试题
讨论f(c)=在x=0处的连续性与可导性.
休克诊断DIC的标准包括_________。
符合肾结核的描述是
下列关于章门穴的叙述,错误的是
患者,男性,24岁。主因发现阴茎部皮疹1天就诊。患者在洗澡时发现冠状沟处皮疹,不痛不痒,否认不洁性接触史。查体:冠状沟处可见针尖大小、表面光滑的乳白色小丘疹,直径1~2mm,圆顶状,呈线状排列。本病诊断的主要依据是
利用中药中各成分沸点的差别进行提取分离的方法是
下列各项中,属于会计工作的政府监督范畴有( )。
从一条指令的启动到下一条指令的启动的间隔时间称为()。
Inaprovocativeresearchpaperfromacoupleofyearsago,economistRobertGordonofNorthwesternUniversityintheUSAasked
WhydidthemangotoFrance?
最新回复
(
0
)