首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且 {[f(x,y)-xy]/(x2+y2)2}=1, ① 则( ).
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且 {[f(x,y)-xy]/(x2+y2)2}=1, ① 则( ).
admin
2019-05-06
27
问题
[2003年] 已知函数f(x,y)在点(0,0)的某个邻域内连续,且
{[f(x,y)-xy]/(x
2
+y
2
)
2
}=1, ①
则( ).
选项
A、点(0,0)不是f(x,y)的极值点
B、点(0,0)是f(x,y)的极大值点
C、点(0,0)是f(x,y)的极小值点
D、根据所给条件无法判别点(0,0)是否为f(x,y)的极值点
答案
A
解析
由极限与无穷小的关系知,在点(0,0)充分小的邻域内有
即 f(x,y)=xy+(1+α)(x
2
+y
2
)
2
, ③
其中
.又由式①及
(x
2
+y
2
)=0得到
即
于是f(x,y)-xy=(1+α)(x
2
+y
2
)
2
, 即 f(x,y)=xy+(x
2
+y
2
)
2
+α(x
2
+y
2
)
2
,
亦即 f(x,y)=f(x,y)=f(0,0)=xy+(x
2
+y
2
)
2
+o((x
2
+y
2
)
2
)
=xy+(x
2
+x
2
)
2
+o(r
2
) (r=x
2
+y
2
→0).
当y=x时,f(x,y)—f(0,0)=x
2
+(x
2
+y
2
)
2
+o(r
2
)>0 (0<r<σ).
当y=一x时,f(x,y)一f(0,0)=一x
2
+(x
2
+x
2
)
2
+o(r
2
)<0 (0<r<σ),其中σ是充分小的正数.可知,(0,0)不是f(x,y)的极值点.仅A入选.[img][/img]
转载请注明原文地址:https://jikaoti.com/ti/GzoRFFFM
0
考研数学一
相关试题推荐
设随机变量X的数学期望和方差分别为E(X)=μ.D(X)=σ2,用切比雪夫不等式估计P{|X一μ|<3σ}.
设n阶实对称矩阵A的秩为r,且满足A2=A(A称为幂等阵).求:(1)二次型XTAX的标准形;(2)|E+A+A2+…+An|的值.
设总体X在区间[0,θ]上服从均匀分布,X1,X2,…,Xn是取自总体X的简单随机样本,(Ⅰ)求θ的矩估计量和最大似然估计量;(Ⅱ)求常数a,b,使的数学期望均为θ,并求
设随机变量X的密度函数为f(x)=1/2e|x|(-∞<x<+∞).问X,|X|是否相互独立?
设A是三阶矩阵,α1,α2,α3为三个三维线性无关的列向量,且满足Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.判断矩阵A可否对角化.
设α是n维单位列向量,A=E-ααT.证明:r(A)<n.
设二维随机变量(X,Y)服从二维正态分布,且X~N(1,32),Y~N(0,42),且X,Y的相关系数为-1/2,又设Z=X,Z是否相互独立?为什么?
设n阶矩阵A的伴随矩阵A*≠O,且非齐次线性方程组AX=b有两个不同解η1,η2则下列命题正确的是().
设A,B是任两个随机事件,下列事件中与A+B=B不等价的是().
设总体X~U[0,θ],其中θ>0,求θ的极大似然估计量,判断其是否是θ的无偏估计量.
随机试题
简述我国宪法修改的法定程序。
企业价值观主要表现在全体成员对本企业_____和_____的高度认同。
睾丸间质细胞的生理功能是
1978年发表的有关生物学研究伦理的经典文献是
我国当前直辖市人民政府可以制定管理本区域事务的()。
当一国利率水平高于外国利率时,会引起()。
6月6日,2013成都《财富》全球论坛开幕,与会嘉宾围绕“()”主题,聚焦中国经济的演变,中国西部地区的发展以及中国在全球视野中的新角色,共同探讨资源解决方案、创新技术、全球金融与经济复苏等中心议题。
以下有关进程状态的叙述中,______是不正确的。
在考生文件夹下有一个名为myform的表单,表单中包含一个列表框和两个命令按钮。请在该表单中完成如下操作:(1)打开表单,设置列表框的数据源(RowSource)和数据源类型(RowSourceType)两个属性。RowSourceTy
TheAncientOlympicGames古代奥林匹克运动会Accordingtohistoricalrecords,thefirst(1)OlympicGamescanbetracedbackto776BC.
最新回复
(
0
)