首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
设α1,α2,…,αs都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
admin
2020-03-01
28
问题
设α
1
,α
2
,…,α
s
都是n维向量,A是m×n矩阵,下列选项中正确的是( ).
选项
A、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
B、若α
1
,α
2
,…,α
s
线性相关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
C、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性相关.
D、若α
1
,α
2
,…,α
s
线性无关,则Aα
1
,Aα
2
,…,Aα
s
线性无关.
答案
A
解析
本题考的是线性相关性的判断问题,可以用定义说明A的正确性,做法如下:
因为α
1
,α
2
,…,α
s
线性相关,所以存在不全为0的数c
1
,c
2
,…,c
s
使得
c
1
α
1
+c
2
α
2
+…+c
s
α
s
=0,
用A左乘等式两边,得
c
1
Aα
1
+c
1
Aα
2
+…+c
s
Aα
s
=0,
于是Aα
1
,Aα
2
,…,Aα
s
线性相关.
但是用秩来解此题,则更加简单透彻.只要应用两个基本性质,它们是:
1.α
1
,α
2
,…,α
s
线性无关<=>r(α
1
,α
2
,…,α
s
)=s.
2.r(AB)≤r(B).
矩阵(Aα
1
,Aα
2
,…,Aα
s
)=A(α
1
,α
2
,…,α
s
),因此
r(Aα
1
,Aα
2
,…,Aα
s
)≤r(α
1
,α
2
,…,α
s
).
于是,若α
1
,α
2
,…,α
s
线性相关,有r(α
1
,α
2
,…,α
s
)<s,从而r(Aα
1
,Aα
2
,…,Aα
s
)<s,Aα
1
,Aα
2
,…,Aα
s
线性相关.
转载请注明原文地址:https://jikaoti.com/ti/GttRFFFM
0
考研数学二
相关试题推荐
设线性方程组AX=β有3个不同的解γ1,γ2,γ3,r(A)=n-2,n是未知数个数,则()正确.
函数的有界区间是()
设区域D由χ=0,y=0,χ+y=,χ+y=1围成,若I1=[ln(χ+y)]3dχdy,I2=(χ+y)3dχdy,I3=sin3(χ+y)dχdy,则().
设向量组α1,α2,…,αm线性无关,β1可由α1,α2,…,αm线性表示,但β2不可由α1,α2,…,αm线性表示,则().
函数f(x)=(x2+x一2)|sin2π|在区间上不可导点的个数是()
二元函数f(x,y)在点(0,0)处可微的一个充分条件是()
设f(x)=.则在点x=1处
设n阶方阵A的各行元素之和均为零,且秩(A)=n-1,则齐次线性方程组AX=0的通解为_______.
设A,B为三阶矩阵,且A~B,且λ1=1,λ2=2为A的两个特征值,|B|=2,求
已知f(x)具有任意阶导数,且fˊ(x)=[f(x)]2,则当n为大于2的正整数时,f(x)的n阶导数f(n)(x)=[].
随机试题
《本草经》谓“安五脏,和心志,令人欢乐无忧”的药物是
A.产生络合物,妨碍吸收B.增强毒性C.产生沉淀,降低疗效D.抑制药物活性E.引发药源性疾病石膏、龙骨等中药与洋地黄类药物联合用
烷化剂对DNA的烷化作用最常发生在()。
居住区公共绿地布置可以采取不同类型的多级布置方式,包括()等方式。
图5-8为排水明沟图示,其中所表示的含义,下列说法中哪项不妥?[2010-88,2008-90]
商业银行的市场风险包括()。
口袋A内装有一个红球,口袋B内装有一红一白两球。某人闭着眼睛从B中随机摸出一球,放入A;再从A中随机摸出一球,发现是红色的。请问,A中剩余的球也为红色的概率是多少?()
社会工作是以利他主义价值观为指导,以科学的知识为基础,运用科学方法助人的服务活动。根据上述定义,下列属于社会工作的一项是()。
设矩阵A和B满足关系式AB=A÷2B,其中A=,求矩阵B.
A—feedbackB—leafobjectsC—physicalsecurityD—keyboardE—flowchart
最新回复
(
0
)