首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题: ①若Ax=0的解均是Bx=0的解,则r(A)≥r(B); ②若r(A)≥r(B),则Ax=0的解均是Bx=0的解; ③若Ax=0与Bx=0同解,则r(A)=r(B); ④若r(
admin
2017-10-12
26
问题
设有齐次线性方程组Ax=0和Bx=0,其中A,n均为m×n矩阵,现有四个命题:
①若Ax=0的解均是Bx=0的解,则r(A)≥r(B);
②若r(A)≥r(B),则Ax=0的解均是Bx=0的解;
③若Ax=0与Bx=0同解,则r(A)=r(B);
④若r(A)=r(B),则Ax=0与Bx=0同解。
以上命题中正确的有( )
选项
A、①②
B、①③
C、②④
D、③④
答案
B
解析
由于线性方程组Ax=0和Bx=0之间可以无任何关系,此时其系数矩阵的秩之间的任何关系都不会影响它们各自解的情况,所以②,④显然不正确,利用排除法,可得正确选项为B。
下面证明①,③正确:
对于①,由Ax=0的解均是Bx=0的解可知,方程组Bx=0含于Ax=0之中。从而Ax=0的有效方程的个数(即r(A))必不少于B=0的有效方程的个数(即r(B)),故r(A)≥r(B).
对于③,由于A,B为同型矩阵,若Ax=0与Bx=0同解,则其解空间的维数(即基础解系包含解向量的个数)相同,即
n—r(A)=n—r(B),从而r(A)=r(B)。
转载请注明原文地址:https://jikaoti.com/ti/GoSRFFFM
0
考研数学三
相关试题推荐
[*]
-1/2
A、 B、 C、 D、 C
设A、B为两随机事件,=_____.
设函数y=f(x)具有二阶导数,且f’(x)>0,f(x)>0,△x为自变量x在点x0处的增量,△y与dy分别为f(x)在点x0处对应的增量与微分,若△x>0,则
试确定常数A,B,C的值,使得ex(1+Bx+Cx2)=1+Ax+o(x3),其中o(x3)是当x→0时比x3高阶的无穷小.
设函数f(x)在x=1的某邻域内连续,且有.(I)求f(1)及;(1I)求f’(1),若又设f"(1)存在,求f"(1).
设函数f(r)当r>0时具有二阶连续导数,令,则当x,y,z与t不全为零时=
某三轮车厂每生产一付车架要搭配三付轮胎,设轮胎的数量为x,价格为p1,车架的数量为y,价格为P2,又设需求函数x=63—0.25p1与y=60-p2,成本函数为C(x,y)=x2+xy+y2+90.求该厂获最大利润时的产量与价格.
设数列{xn}由递推公式(n=1,2,…)确定,其中a>0为常数,x0是任意正数,试证存在,并求此极限.
随机试题
无排卵性功血最常见于_________和围绝经期妇女。
鉴别腹股沟斜疝与直疝最有价值的临床表现是
某市政府投资的一建设工程项目,项目法人单位委托某招标代理机构采用公开招标方式代理项目施工招标,并委托具有相应资质的工程造价咨询企业编制了招标控制价。招标过程中发生以下事件。事件1:招标信息在招标信息网上发布后,招标人考虑到该项目建设工期紧,为缩短招
在水泥混凝土路面低温施工中,路面两端构造物间距不小于( )时,应设一道胀缝。
李先生是我国工程院资深院士,按规定他每年得到1万元院士津贴。则就这笔收入,李先生应该缴纳个人所得税()元。
评估无形资产价值时,预计无形资产的有效期限,通常采用的方法是()。
董事的善管义务不包括()。
以下关于税收管辖权的说法,不正确的是()。
设置政府机构的依据是()。
调查表明,使得大学生学习成绩下降的一个重要因素是:很多大学生玩网络游戏。为了提高大学生的学习成绩,学校作出决定:禁止在校园网上玩网络游戏。以下哪项最能对学校的决定进行质疑?
最新回复
(
0
)