通过生产理论中的等产量曲线与等成本曲线的关系来说明生产者的均衡点(要以图形辅助)。

admin2014-10-04  38

问题 通过生产理论中的等产量曲线与等成本曲线的关系来说明生产者的均衡点(要以图形辅助)。

选项

答案假定某一种商品的生产需要投入劳动L资本K两种要素,两种要素都是可变的,并且两者之间可以相互替代,那么等产量曲线就是一条由用技术上有效的方法生产一定产量的所有劳动和资本可能组合点所组成的一条曲线。假定生产要素仍未劳动L和资本K两种,劳动的价格为工资W,资本的价格为利率r.假定厂商的总成本为C,其成本构成就是:C=W.L+r.K其中W.L是劳动的成本,r.K是资本的成本。对应这个函数的曲线就是等成本线与等产量曲线类似,等成本线C上的每一点也表示是劳动与资本的一种组合。厂商的理性决策,就是同时考虑技术上和经济上两方面的因素,选择一种要素投入的组合,使得生产者能够在既定的产品下所费成本最小,或者在既定的成本下所生产的产品最大。(这两种目标的实际效果是等价的) (1)成本既定,产品最大化 [*] 如图24所示,由于成本既定,所以只有一条等成本线KL。Q1、Q2、Q3三条等产品线,其中Q3代表的产品水平最高,Q2次之,Q1代表的产品水平最低。碰与Q1相交,与Q2相切,与Q3既不相交也不相切。这意味着,较低水平的产品Q1,可以在既定的成本条件下生产,但不经济;较高水平的产品Q3,虽经济,但在既定的成本条件下不可能达到;只有在KL与Q2的切点E上才实现了生产要素的最优组合。这就是说,在成本既定的条件下,购买OM的劳动、ON的资本可以获得最大产品。E点为生产者均衡点。 (2)产品既定,成本最小化 [*] 如图25所示,由于产品既定,所以只有一条等产品线Q,K1L1、K2L2、K3L3分别表示总成本为C1、C2、C3的三条等成本线。其中K1L1代表的成本最低,K2L2次之,K3L3代表的成本最高。Q与K3L3相交,与K2L2相切,与K1L1既不相交也不相切。这意味着,用较高的成本C3可以生产产品Q,但不经济;用较低成本C1虽然经济,但无法生产产品Q;而用成本C2生产产品Q,既可能又最经济。我们将既定的等产品线Q和等成本线C2的切点E称作生产者均衡点,它表示该点的投入组合是既定产品时成本最小的组合。上述两种情况说明,要实现生产要素的最优投入组合,必须使一定的成本获得最大的产品,或者使一定的产品水平只需付出最小的成本。生产要素的最优投入组合意味着资源的最优配置。在切点E,等成本线和等产品线的斜率相等。等成本线的斜率等于两种生产要素的价格的比率,而等产品线的斜率等于两种要素的边际产品的比率,于是有:PL/P=MPK/MPK即:MPL/PL=MPK/PK这意味着厂商为了能在既定产品下所费成本最小或能在既定成本下所生产的产品最大,必须使其单位成本支出所获得的各种要素的边际产品都相等,即最后一元钱无论用来买何要素所增加的产品是相同的,这就是两种生产要素最优组合的原则。

解析
转载请注明原文地址:https://jikaoti.com/ti/GnTUFFFM
0

最新回复(0)