首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1 =(1,-2,3) T ,α2 =(2,1,1) T ,β1= (-2,1,4) T ,β2=(-5,-3,5) T .求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
设3维向量组α1,α2线性无关,β1,β2线性无关. 若α1 =(1,-2,3) T ,α2 =(2,1,1) T ,β1= (-2,1,4) T ,β2=(-5,-3,5) T .求既可由α1,α2线性表出,也可由β1,β2线性表出的所有非零向
admin
2018-07-23
36
问题
设3维向量组α
1
,α
2
线性无关,β
1
,β
2
线性无关.
若α
1
=(1,-2,3)
T
,α
2
=(2,1,1)
T
,β
1
= (-2,1,4)
T
,β
2
=(-5,-3,5)
T
.求既可由α
1
,α
2
线性表出,也可由β
1
,β
2
线性表出的所有非零向量ξ.
选项
答案
设ξ= k
1
α
1
+ k
2
α
2
=-λ
1
β
1
-λ
2
β
2
,则得齐次线性方程组是k
1
α
1
+ k
2
α
2
+λ
1
β
1
+λ
2
β
2
=0. 将α
1
,α
2
,β
1
,β
2
合并成矩阵,并作初等行变换.得 [*] 解得 (k
1
,k
2
,λ
1
,λ
2
)=k(-1,2,-1,1). 故既可由α
1
,α
2
线性表出,又可以β
1
,β
2
线性表出的所有非零向量为 [*] 其中k是任意的非零常数 或[*] 其中k是任意的非零常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/GZWRFFFM
0
考研数学二
相关试题推荐
A、 B、 C、 D、 D
设函数f(x)在x=2的某邻域内可导,且fˊ(x)=ef(x),f(2)=1,则fˊ〞(2)=_______.
A、 B、 C、 D、 A
设f(x)和φ(x)在(-∞,+∞)上有定义,f(x)为连续函数,且,(φ)≠0,f(x)有间断点,则
设4阶矩阵且矩阵A满足关系式A(E—C-1B)TCT=E,其中E为4阶单位矩阵,C-1表示C的逆矩阵,CT表示C的转置矩阵.将上述关系式化简并求矩阵A.
已知线性方程组的通解为[2,1,0,1]T+k[1,一1,2,0]T.记αj=[a1j,a2j,a3j,a4j]T,j=1,2,…,5.问:(1)α4能否由α1,α2,α3,α5线性表出,说明理由;(2)α4能否由α1,α2,α
求极限:
下列命题中正确的是()
有一平底容器,其内侧壁是由曲线x=φ(y)(y≥0)绕y轴旋转而成的旋转曲面,容器的底面圆的半径为2m。根据设计要求,当以3m3/min的速率向容器内注入液体时,液面的面积将以πm2/min的速率均匀扩大(假设注入液体前,容器内无液体)。根据t时刻液面
随机试题
噎膈,在下列何期治疗时需加入滋拼血润燥之品
下列属于城镇体系规划强制性内容的是()。
在我国,信用证的有效期通常为1年。()
()将各类方案的各种因素进行综合考虑比较,从中选择大部分因素比较好的方案。
下述四组物品中,不准随身携带上飞机的是()。
送养人可以是()公民。
表格中对应的物质不能实现如图2所示转化的是()。
正当法律程序仅仅具有工具性价值。
设A,B是可逆矩阵,且A与B相似,则下列结论错误的是
Wehaveavacancyforatraineeinourheadoffice.Maindutieswillbeofficeworkwithsomereceptionandtelephonework.T
最新回复
(
0
)