首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(χ),q(χ),f(χ)均是χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C1,C2为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
设p(χ),q(χ),f(χ)均是χ的连续函数,y1(χ),y2(χ),y3(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C1,C2为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
admin
2019-06-29
41
问题
设p(χ),q(χ),f(χ)均是χ的连续函数,y
1
(χ),y
2
(χ),y
3
(χ)是y〞+p(χ)y′+q(χ)y=f(χ)的三个线性无关解,C
1
,C
2
为任意常数,则齐次方程y〞+p(χ)y′+q(χ)y=0的通解是( )
选项
A、C
1
y
1
(χ)+(C
1
-C
2
)y
2
(χ)+(1-C
2
)y
3
(χ)
B、(C
1
-C
2
)y
1
(χ)+(C
2
-1)y
2
(χ)+(1-C
1
)y
3
(χ)
C、(C
1
+C
2
)y
1
(χ)+(C
1
-C
2
)y
2
(χ)+(1-C
1
)y
3
(χ)
D、C
1
y
1
(χ)+C
2
y
2
(χ)+(1-C
1
-C
2
)y
3
(χ)
答案
B
解析
将选项B改写为:(C
1
-C
2
)y
1
(χ)+(C
2
-1)y
2
(χ)+(1-C
1
)y
3
(χ)
=C
1
[y
1
(χ)-y
3
(χ)]+C
2
[y
2
(χ)-y
1
(χ)]+[y
3
(χ)-y
2
(χ)].
因为y
1
(χ),y
2
(χ),y
3
(χ)均是y〞+p(χ)y′+q(χ)y=f(χ)的解,
所以y
1
(χ)-y
3
(χ),y
2
(χ)-y
1
(χ),y
3
(χ)-y
2
(χ)均是y〞+p(χ)y′+q(χ)y=0的解,并且y
1
(χ)-y
2
(χ)与y
2
(χ)-y
1
(χ)线性无关.故B为通解.
(事实上,若y
1
(χ)-y
3
(χ)与y
2
(χ)-y
1
(χ)线性相关,则存在不全为零的k
1
,k
2
使得
k
1
[y
1
(χ)-y
3
(χ)]+k
2
[y
2
(χ)-y
1
(χ)]=0,
即(k
1
-k
2
)y
1
(χ)+k
2
y
2
(χ)-k
1
y
3
(χ)=0.
由于y
1
(χ),y
2
(χ),y
3
(χ)是线性无关的,故k
1
,k
2
全为零,矛盾.故y
1
(χ)-y
3
(χ)与y
2
(χ)-y
1
(χ)线性无关).
转载请注明原文地址:https://jikaoti.com/ti/GZERFFFM
0
考研数学二
相关试题推荐
设(2E—C-1B)AT=C-1,其中E是四阶单位矩阵,AT是四阶矩阵A的转置矩阵,求A。
设矩阵A=,矩阵B满足ABA*=2BA*+E,其中A*为A的伴随矩阵,E是单位矩阵,则|B|=_________。
设A为三阶矩阵,α1,α2为A的分别属于特征值一1,1的特征向量,向量α3满足Aα3=α2+α3。证明α1,α2,α3线性无关;
设。对(Ⅰ)中的任意向量ξ2,ξ3,证明:ξ1,ξ2,ξ3线性无关。
设矩阵。若集合Ω={1,2},则线性方程组Ax=b有无穷多解的充分必要条件为()
设(1)若ai≠aj(i≠j),求ATX=b的解;(2)若a1=a3=a≠0,a2=a4=-a,求ATX=b的通解.
设线性方程组(1)求线性方程组(I)的通解;(2)m,n取何值时,方程组(I)与(Ⅱ)有公共非零解;(3)m,n取何值时,方程组(I)与(Ⅱ)同解.
设α1,α2,α3是4元非齐次线性方程组Ax=b的3个解向量,且r(A)=3,α1=(1,2,3,4)T,α2+α3=(0,1,2,3)T,C表示任意常数,则线性方程组Ax=b的通解x=()
求微分方程χy=χ2+y2满足初始条件y(e)=2e的特解.
求微分方程cosy-cosχsin2y=siny的通解.
随机试题
按可燃物的类型和燃烧特性不同,下列物质发生火灾属于D类火灾的是()。
2014年3月16日至22日,国家教育督导检查组对某省市申报的17个义务教育发展基本均衡县(区)进行督导检查,认为该省市义务教育均衡发展达到了国家规定标准,建议国务院教育督导委员会认定其整体通过国家义务教育均衡发展督导评估。该省市也因此成为全国第一个整体实
农村包围城市,武装夺取政权道路成为全党共识的标志是()
下列哪种细菌为不溶血型链球菌
嗳气频作,常随情绪变化者,多见于嗳气频作,伴饥不欲食者,多见于
患者,女,30岁。结婚3年未孕,月经50~60天一行,量少色淡,腰酸腿软,性欲淡漠,小便清长,大便不实。舌淡苔白,脉沉细。可诊断为
根据我国《宪法》和《选举法》的规定,下列哪些选项是正确的?()
ABC公司的额定股本为100000股,其中有100000被作为库藏股持有;剩余的股票由ABC的股东持有。11月1日,董事会宣告了每股$0.1的现金股息,支付日为1月2日。与此同时,董事会还宣告了5%的股票股息,支付日在12月31日。在宣告日,ABC的
法人的民事行为能力与民事权利能力是同时产生,同时消灭的。()
防空识别区
最新回复
(
0
)