首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
以下4个命题: ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(-∞,+∞)上连续,且∫-RRf(x)dx存在,∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=∫-RRf
以下4个命题: ①设f(x)是(-∞,+∞)上连续的奇函数,则∫-∞+∞f(x)dx必收敛,且∫-∞+∞f(x)dx=0; ②设f(x)在(-∞,+∞)上连续,且∫-RRf(x)dx存在,∫-∞+∞f(x)dx出必收敛,且∫-∞+∞f(x)dx=∫-RRf
admin
2019-05-15
49
问题
以下4个命题:
①设f(x)是(-∞,+∞)上连续的奇函数,则∫
-∞
+∞
f(x)dx必收敛,且∫
-∞
+∞
f(x)dx=0;
②设f(x)在(-∞,+∞)上连续,且
∫
-R
R
f(x)dx存在,∫
-∞
+∞
f(x)dx出必收敛,且∫
-∞
+∞
f(x)dx=
∫
-R
R
f(x)dx;
③若∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,则∫
-∞
+∞
[f(x)+g(x)]dx未必发散;
④若∫
-∞
0
f(x)dx与∫
0
+∞
f(x)dx都发散,则∫
-∞
+∞
f(x)dx未必发散.
正确的个数为 ( )
选项
A、1个
B、2个
C、3个
D、4个
答案
A
解析
∫
-∞
+∞
f(x)dx收敛则对任意常数a,使∫
-∞
a
f(x)dx和∫
a∞
+∞
f(x)dx都收敛,此时
∫
-∞
+∞
f(x)dx=∫
-∞
a
f(x)dx+∫
a
+∞
f(x)dx.
设f(x)=x,则f(x)是(-∞,+∞)上连续的奇函数,且
∫
-R
R
f(x)dx=0.
但是
∫
-∞
0
f(x)dx=∫
-∞
0
xdx=∞,∫
0
+∞
f(x)dx=∫
0
+∞
xdx=∞,故∫
-∞
+∞
f(x)如发散,这表明命题①,②,④都不是真命题.
设f(x)=x,g(x)=-x,由上面讨论可知∫
-∞
+∞
f(x)dx与∫
-∞
+∞
g(x)dx都发散,但∫
-∞
+∞
[f(x)+g(x)]dx收敛,这表明命题③是真命题.故应选A.
转载请注明原文地址:https://jikaoti.com/ti/GMoRFFFM
0
考研数学一
相关试题推荐
讨论曲线y=2lnx与y=2x+ln2x+k在(0,+∞)内的交点个数(其中k为常数).
设函数f(t)在[0,+∞)上连续,且满足方程f(t)=dxdy,试求f(t)
设有参数方程0≤t≤π.讨论y=y(x)的可导性与单调性;
假设随机变量X1,…,Xn相互独立,服从同参数λ的泊松分布.记Sn=Xi+n,当n充分大时,求Sn的近似分布.
设随机变量X服从(0,1)上的均匀分布,求下列Yi(i=1,2,3,4)的数学期望和方差:(Ⅰ)Y1=eX;(Ⅱ)Y2-2lnX;(Ⅲ)Y3=1/X;(Ⅳ)Y4=X2.
求下列区域Ω的体积:Ω:由y2=a2-az,x2+y2=ax,z=0(a>0)围成;
设f(x)在x=a处n(n≥2)阶可导,且当x→a时f(x)是x→a的n阶无穷小,求证:f(x)的导函数f’(x)当x→a时是x→a的n-1阶无穷小.
设A为2阶矩阵,α1,α2为线性无关的2维列向量.Aα1=0,Aα2=2α1+α2,则A的非零特征值为_________.
微分方程y’+ytanx=cosx的通解为________.
设f(x)=3x3+x2|x|,则使f(n)(0)存在的最高阶数n为()
随机试题
堆石体填筑采用后退法填筑工艺的特点是().
人们往往认为一个学习成绩优异的学生在纪律和品德等方面表现得也很好。这种现象属于()。
痔疮肿痛出血应首选( )。
每一期的IM含有
沿海主枢纽港指()等20个港口。
个人贷款的特征包括()。
A.TheResponsibilityofCompaniestoReduceWasteB.MeansAdoptedtoReduceHouseholdWasteC.TheDrawbacksofFly-ti
如果A为整数且,|A|>=10,则打印“OK”,否则打印“Error”,表示这个条件的单行格式If语句是()。
A.alotofmutualbitternesswillcomeB.highlysubjectiveC.differentlybydifferentpersonsD.keeponmoldingyouE.inac
[A]station[B]airport[C]map[D]cinema[E]receipt[F]letter[G]bankItisadrawingofacountryortheworld.
最新回复
(
0
)