首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=(k为常数),且AB=O.求线性方程组AX=0的通解.
admin
2019-05-10
36
问题
[2005年] 已知三阶矩阵A的第l行是[a,b,c],a,b,c不全为零,矩阵B=
(k为常数),且AB=O.求线性方程组AX=0的通解.
选项
答案
为求AX=0的通解,需求其基础解系,为此需求出秩(A),这就必然要对k进行讨论,确定基础解系所含解向量的个数后,可从B的列向量中求出基础解系. 由题设AB=O可得出两种思路:一是秩(A)+秩(B)≤n;另一是B的列向量都是AX=0的解向量,据此可得到下列解法: (1)如k≠9,则秩(B)=2,因而由秩(A)+秩(B)≤3得到秩(A)≤1.显然秩(A)≥1,故秩(A)=1,于是AX=0的一个基础解系含n一秩(A)=3—1=2个解向量.由AB=0知α
1
=[1,2,3]
T
,α
2
=[3,6,k]
T
为AX=0的两个线性无关的解向量,于是其通解为k
1
α
1
+k
2
α
2
=k
1
[1,2,3]
T
+k
2
[3,6,k]
T
,k
1
,k
2
为任意两个常数. (2)如k=9,则秩(B)=1,于是秩(A)≤3一秩(B)=2.因而秩(A)=1或秩(A)=2. 当秩(A)=1时,则A的第2,3两行均与第1行成比例,故AX=0的等价方程组为ax
1
+bx
2
+cx
3
=0,不妨设c≠0,则 [*] 其一个基础解系含2个解向量,即β
1
=[1,0,-a/c]
T
,β
2
=[0,1,一b/c]
T
.为方便计,不妨取为β
1
=[c,0,一a]
T
,β
2
=[0,c,一b]
T
,其通解为l
1
β
1
+l
2
β
2
,l
1
,l
2
为任意常数. 当秩(A)=2时,则AX=0的一个基础解系只含n一秩(A)=3—2=1个解向量.此解向量γ可取B中任意一个列向量,不妨令γ=[1,2,3]
T
,则其通解为tγ,其中t为任意常数.
解析
转载请注明原文地址:https://jikaoti.com/ti/GLLRFFFM
0
考研数学二
相关试题推荐
设f(χ),g(χ)在[a,b]上连续,在(a,b)内可导,且g′(χ)≠0.证明:存在ξ∈(a,b),使得
计算定积分
设f(χ)在[0,1]上可导,且|f′(χ)|<M,证明:
设α1,…,αm,β为m+1个n维向量,β=α1+…+αm(m>1).证明:若α1,…,αm线性无关,则β-α1,…,β-αm线性无关.
一质点从时间t=0开始直线运动,移动了单位距离使用了单位时间,且初速度和末速度都为零.证明:在运动过程中存在某个时刻点,其加速度绝对值不小于4.
四元非齐次线性方程组AX=b有三个解向量α1,α2,α3且r(A)=3,设α1+α2=α2+α3=,求方程组Ax一6的通解.
设连续函数f(χ)满足:∫01[f(χ)+χf(χt)]dt与χ无关,求f(χ).
现有两只桶分别盛有10L浓度为15g/L的盐水,现同时以2L/min的速度向第一只桶中注入清水,搅拌均匀后以2L/min的速度注入第二只桶中,然后以2L/min的速度从第二只桶中排出,问5min后第二只桶中含盐多少克?
[2018年]下列函数中,在x=0处不可导的是().
[2017年]已知函数y(x)由方程x3+y3一3x+3y一2=0确定,求y(x)的极值.
随机试题
试述专制型、放任型以及民主型师生关系的特点。
Theoryisbasedonpracticeand______servespractice.
患者男,32岁,鼻涕带血2个月余,检查见中鼻道脓液,中鼻甲息肉样变。为明确诊断,应行检查
阿仑膦酸钠为
引起根尖周炎的物理因素不包括
"主液"的腑是()
基金债券托管账户在交易当日进行核对,如无交易每()核对一次。
若假设检验HH0:新工艺不比旧工艺好,H1新工艺好于旧工艺,则下列属于犯第二类错误的是()。
受众(华东师大2005研;华中师大2005研)
食品安全问题是关系到千千万万人民群众切身利益的社会问题。可是在中国,重大食品安全事件频繁发生,食品安全问题日益严峻。某些没有诚信的商人为了追求利润最大化,不惜往人们每天食用的食品当中添加种类繁多的非法化学添加剂(additive),极大损害了人们的身体健康
最新回复
(
0
)