首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个解,且=0. (Ⅰ)求y(χ),并求y=y(χ)到χ轴的最大距离. (Ⅱ)计算∫0+∞y(χ)dχ.
设y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e-χ的一个解,且=0. (Ⅰ)求y(χ),并求y=y(χ)到χ轴的最大距离. (Ⅱ)计算∫0+∞y(χ)dχ.
admin
2019-07-28
41
问题
设y=y(χ)(χ>0)是微分方程2y〞+y′-y=(4-6χ)e
-χ
的一个解,且
=0.
(Ⅰ)求y(χ),并求y=y(χ)到χ轴的最大距离.
(Ⅱ)计算∫
0
+∞
y(χ)dχ.
选项
答案
(Ⅰ)2y〞+y′-y=(4-6χ)e
-χ
的特征方程为2λ
2
+λ-1=0,特征值为λ
1
=-1,λ
2
=[*],得2y〞+y′-y=0的通解为y=C
1
e
-χ
+C
2
[*], 令2y〞-y′-y=(4-6χ)e
-χ
的特解为y
0
=(aχ
2
+bχ)e
-χ
,代入得a=1,b=0, 原方程的通解为:y=C
1
e
-χ
+C
2
[*]+χ
2
e
-χ
. 由[*]=0得y(0)=00,y′(0)=0,代入通解得C
1
=C
2
=0,故y=χ
2
e
-χ
由y′(2χ-χ
2
)e
-χ
=0得χ=2, 当χ∈(0,2)时,y>0;当χ>2时,y′<0,则χ=2为y(χ)的最大点, 故最大距离为d
max
=y(2)=4e
-2
. (Ⅱ)∫
0
+∞
y(χ)dχ=∫
0
+∞
χ
2
e
-χ
dχ=г(3)=2!=2.
解析
转载请注明原文地址:https://jikaoti.com/ti/GKERFFFM
0
考研数学二
相关试题推荐
设f(x)在[0,1]上连续,在(0,1)内可导,f(0)=0,=1,f(1)=0.证明:(1)存在η∈,使得f(η)=η;(2)对任意的k∈(-∞,+∞),存在ξ∈(0,η),使得f’(ξ)-k[f(ξ)-ξ]=1.
求极限
设A为m阶正定矩阵,B为m×n阶实矩阵.证明:BTAB正定的充分必要条件是r(B)=n.
交换积分次序并计算∫0adx∫0x
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设函数f(x)在(-∞,+∞)内连续,其导数的图形如右图,则f(x)有().
运用导数的知识作函数y=x+的图形.
设F(x)=∫0x2e-t2dt,试求:(Ⅰ)F(x)的极值;(Ⅱ)曲线y=F(x)的拐点的横坐标;(Ⅲ)∫-23x2F’(x)dx.
下列反常积分中发散的是
设f(χ)具有连续导数,且F(χ)=∫0χ(χ2-t2)f′(t)dt,若当χ→0时F′(χ)与χ2为等价无穷小,则f′(0)=_______.
随机试题
女性,26岁。风心病二尖瓣狭窄伴二尖瓣关闭不全患者。发热2周,体检:T38.3℃,口腔黏膜及下肢皮肤瘀点。心率104次/分,律齐。二尖瓣区2/6级收缩期杂音及舒张期杂音,主动脉瓣区舒张期杂音,腹软,脾左肋下2cm,有压痛。该患者应进行下列哪项检查最能明确诊
下列关于胎儿股骨长正确的描述有
归经是指药物
急性大面积心肌梗死应给予()
1951年中央人民政府政务院公布________,明确高等教育是作为教育基础上的更高层次教育。
实物直观的优势在于容易突出事物的本质要素和关键特征。()
人类正面临着全球变暖的挑战,联合国的一份报告为我们()了气候变化将会产生的灾难性后果。
Oceanographyhasbeendefinedas"Theapplicationofallsciencestothestudyofthesea".Beforethenineteenthcentury,scien
某用户分配的网络地址为192.24.0.0—192.24.7.0,这个地址块可以用()表示,其中可以分配()个主机地址。
SalesWhenastoresells【T1】______atacostlowerthanusual,itiscalledasale.Saleslastfor【T2】______.Thenthecosti
最新回复
(
0
)