首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足.则f(x)的表达式是____________.
admin
2014-05-19
36
问题
设f(x)在[0,+∞)上连续,在(0,+∞)内可导,当x∈(0,+∞)时f(x)>0且单调上升,x=g(y)为y=f(x)的反函数,它们满足
.则f(x)的表达式是____________.
选项
答案
f(x)=x
2
(x≥0).
解析
【分析一】由定积分的几何意义知:
由曲线y=f(x),x、y轴及直线x=t>0所围成的曲边梯形的面积,
由曲线x=g(y),y轴(y≥f(0))及直线y=f(t)所围成的曲边三角形的面积.x=g(y)与y=f(x)互为反函数,代表同一条曲线,它们面积之和是长方形面积(边长分别为t与f(t)),见右图于是
因此tf(t)=t
3
,f(t)=t
2
(t≥0),即f(x)=x
2
(x≥0).【分析二】先化简题设方程的左端式子,有
于是
即tf(t)=t
3
,f(t)=t
2
(t≥0).因此f(x)=x
2
(x≥0).【分析三】将题设方程两边求导得
即f(t)+g[f(t)]f
’
(t)=3t
2
,f(t)+tf
’
(t)=3t
2
,亦即[tf(t)]
’
=3t
2
(原方程中令t=0,等式自然成立,不必另加条件).将上式积分得
因f(t)在[0,+∞)上连续,故必有C=0.因此f(x)=x
2
(x≥0).
转载请注明原文地址:https://jikaoti.com/ti/GBDRFFFM
0
考研数学二
相关试题推荐
-1
=_______.
[2004年]设随机变量X的分布函数为其中参数α>0,β>1.设X1,X2,…,Xn为来自总体X的简单随机样本.当α=1时,求未知参数β的最大似然估计量;
(2007年)设函数f(x),g(x)在[a,b]上连续,在(a,b)内二阶可导且存在相等的最大值,又f(a)=g(a),b(b)=g(b),证明:(I)存在η∈(a,b),使得f(η)=g(η);(Ⅱ)存在ξ∈(a,b),使得f"(ξ)=g"(ξ)。
设随机变量X的分布律为P{X=k}=p(1-P)k-1(k=1,2,…),Y在1~k之间等可能取值,求P{Y=3}。
若函数f(x)在点x0处的左导数f’-(x0)和右导数f’+(x0)都存在,则()。
设X~U(0,1),Φ(x)是标准正态分布的分布函数,Φ-1(x)是Φ(x)的反函数,则Y=Φ-1(X)的分布为()。
设F(u,v)可微,y=y(x)由方程F[xex+y,f(xy)]=x2+y2所确定,其中f(x)是连续函数且满足关系式∫1xyf(t)dt=x∫1yf(t)dt+y∫1xf(t)dt,x,y>0,又f(1)=1,求:f(x)的表达式。
设f(u,v)具有连续偏导数,且满足f’u(u,v)+f’v(u,v)=uv,则函数y(x)=e-2xf(x,x)满足条件y(0)=1的表达式为________.
已知f(x)是微分方程xf′(x)-f(x)=满足初始条件f(1)=0的特解,则f(x)dx=__________.
随机试题
江泽民指出,加强文化建设,必须()
在《静静的顿河》中,主人公葛利高里爱上的人是()
A、肾有浓缩能力B、肾有稀释能力C、肾不能浓缩尿液D、肾不能稀释尿液E、以上都不能代表自由水清除率正值代表
多形性腺瘤的组成包括肿瘤性上皮组织和
患者,男,36岁。由于凝滞气血,症见鼻塞、鼻痒气热、流涕黄稠、或持续鼻塞、嗅觉迟钝。治疗宜选用的是千柏鼻炎片。千柏鼻炎片的主治不包括
赵某家房屋与周围数十家平房相连,赵某给自家的财产投了保脸后,将家中财产偷偷转到其弟家藏匿,然后放火烧了房屋,向保险公司谎称发生了意外事故,意欲骗取高额赔偿金。赵某的行为构成哪种犯罪?( )
按合同管理规定保留金应一次退回给承包人。( )
(2006年)设∫0xf(t)dt=2f(x)-4,且f(0)=2,则f(x)是()。
曾在云梦山跟随纵横家鬼谷子学习的古代外交家和军事家不包括()
Englishhasundergonedramaticperiods.The______periodisroughlyfrom449to1100.
最新回复
(
0
)