首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
(Ⅰ)设α1=(a1,a2,a3,a4),α2=(a2,一a1,a4,一a3),α3=(a3,一a4,一a1,a2),其中ai(i=1,2,3,4)不全为零.证明α1,α2,α3线性无关; (Ⅱ)记A=,证明AAT是正定矩阵.
(Ⅰ)设α1=(a1,a2,a3,a4),α2=(a2,一a1,a4,一a3),α3=(a3,一a4,一a1,a2),其中ai(i=1,2,3,4)不全为零.证明α1,α2,α3线性无关; (Ⅱ)记A=,证明AAT是正定矩阵.
admin
2020-03-15
51
问题
(Ⅰ)设α
1
=(a
1
,a
2
,a
3
,a
4
),α
2
=(a
2
,一a
1
,a
4
,一a
3
),α
3
=(a
3
,一a
4
,一a
1
,a
2
),其中a
i
(i=1,2,3,4)不全为零.证明α
1
,α
2
,α
3
线性无关;
(Ⅱ)记A=
,证明AA
T
是正定矩阵.
选项
答案
(Ⅰ)用反证法.假设α
1
,α
2
,α
3
线性相关,则由定义,存在不全为零的实数k
1
,k
2
,k
3
,使得 k
1
α
1
+k
2
α
2
+k
3
α
3
=0. (*) 因 α
1
α
2
T
=(a
1
,a
2
,a
3
,a
4
)[*]=0,α
1
α
3
T
=(a
1
,a
2
,a
3
,a
4
)[*]=0, α
2
α
3
T
=(a
2
,—a
1
,a
4
,—a
3
)[*]=0. 又α
j
α
j
=[*]a
j
2
≠0,j=1,2,3. 故将式(*)两端右边乘α
j
T
,j=1,2,3,得 k
j
α
j
α
j
T
=0,α
j
α
j
T
≠0k
j
=0,j=1,2,3, 这和假设矛盾,得证α
1
,α
2
,α
3
线性无关. (Ⅱ)由(Ⅰ)知α
1
,α
2
,α
3
线性无关,则 r(A)=[*]=3,且AA
T
是实对称矩阵. 则齐次方程组A
T
x=(α
1
T
,α
2
T
,α
3
T
)x=0仅有唯一零解,则对任给的x≠0,A
T
x=(α
1
T
,α
2
T
,α
3
T
)x≠0, 两端左边乘(A
T
x)
T
,得 (A
T
x)
T
(A
T
x)=x
T
AA
T
x>0, 得证,AA
T
是正定矩阵.
解析
转载请注明原文地址:https://jikaoti.com/ti/G2iRFFFM
0
考研数学三
相关试题推荐
已知齐次线性方程组同解,求a,b,c的值。
已知方程组的一个基础解系为(b11,b12,…,b1,2n)T,(b21,b22,…,bn,2n)T,…,(bn1,bn2,…,bn,2n)T。试写出线性方程组的通解,并说明理由。
已知A,B为三阶非零矩阵,且A=β1=(0,1,一1)T,β2=(a,2,1)T,β3=(b,1,0)T是齐次线性方程组βx=0的三个解向量,且Ax=β3有解。求a,b的值;
设n元线性方程组Ax=b,其中A=当a为何值时,该方程组有无穷多解,并求通解。
设线性方程组已知(1,一1,1,一1)T是该方程组的一个解,求方程组所有的解。
随机试题
简述影响网络安全的因素。
伤阴的临床表现是伤津的临床表现是
第一心音标志
脊髓损伤急性期的康复措施是脊髓损伤恢复期的康复措施是
在日常生活中,我们经常听到“以事实为依据、以法律为准绳”的说法,而在法学中,专业意义上的“事实构成”是指()。
一般资料:男,38岁,公司总经理。案例介绍:求助者大学毕业后,和几个同学合伙组建了一个公司,自己当总经理。求助者做事果断、思维敏捷、有头脑,工作也很认真、勤奋,业绩还算不错。最近由于公司规模扩大,招了几名硕士、博士,其中一位做了他的助理。他发现自
教学中影响迁移的主要因素有哪些?
贾老师2012年从某师范大学毕业后,应聘到一所民办学校,担任幼儿园教师。学校地处市郊,实行封闭化管理,平时不能外出且教学任务很重,不过每月有3000元的收入,比公办学校的教师工资高很多,这使她很感欣慰。然而,随着寒假的到来,她才知道,学校有一个规定:寒暑假
经济基础决定上层建筑,上层建筑作用于经济基础。()
公共生活中法律规范的作用有很多,其中法律的最首要的作用是()
最新回复
(
0
)