首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设A为m×n矩阵,且r(A)=r()=r<n,其中=(Ab). (Ⅰ)证明方程组AX=b有且仅有n-r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b的值及方程组的通解.
设A为m×n矩阵,且r(A)=r()=r<n,其中=(Ab). (Ⅰ)证明方程组AX=b有且仅有n-r+1个线性无关解; (Ⅱ)若有三个线性无关解,求a,b的值及方程组的通解.
admin
2019-07-10
58
问题
设A为m×n矩阵,且r(A)=r(
)=r<n,其中
=(A
b).
(Ⅰ)证明方程组AX=b有且仅有n-r+1个线性无关解;
(Ⅱ)若
有三个线性无关解,求a,b的值及方程组的通解.
选项
答案
(Ⅰ)令ξ
1
,ξ
2
,…,ξ
n-r
…为AX=0的基础解系,η
0
为AX=b的特解,显然β
0
=η
0
,β
1
=ξ
1
+η
0
,…,β
n-r
=ξ
n-r
+η
0
为AX=b的一组解,令k
0
β
0
+k
1
β
1
…+k
n-r
β
n-r
=0,即 k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
+(k
0
+k
1
+…+k
n-r
)η
0
=0. 上式左乘A得(k
0
+k
1
…+k
n-r
)b=0,因为b≠0时,k
0
+k
1
…+k
n-r
=0,于是k
1
ξ
1
+k
2
ξ
2
+…+k
n-r
ξ
n-r
=0,因为ξ
1
,ξ
2
,…,ξ
n-r
为AX=0的基础解系,所以k
1
=k
2
=…=k
n-r
=0,于是k
0
=0,故β
0
,β
1
,…,β
n-r
线性无关. 若γ
0
,γ
1
,…,γ
n-r+1
为AX=b的线性无关解,则ξ
1
=γ
1
-γ
0
,…,ξ
n-r+1
=γ
0
为AX=0的解,令k
1
ξ
1
+k
2
ξ
2
+…+k
n-r+1
ξ
n-r+1
=0,则 k
1
γ
1
+k
2
γ
2
+…+k
n-r+1
γ
n-r+1
-(k
1
+k
2
+…+k
n-r+1
)γ=0. 因为γ
0
,γ
1
,…,γ
n-r+1
线性无关,所以k
1
=k
2
=…k
n-r+1
=0,即ξ
1
,ξ
2
,…,ξ
n-r+1
为AX=0的线性无关解,矛盾,故方程组AX=b恰有n-r+1个线性无关解. (Ⅱ)令[*] 则[*]化为AX=β. 因为AX=β有三个非零解,所以AX=0有两个非零解,故4-r(A)≥2,r(A)≤2,又因为r(A)≥2,所以r(A)=r([*])=2. [*] 则a=-3,b=-1. 由[*]得原方程组的通解为 X=[*](其中k
1
,k
2
为任意常数).
解析
转载请注明原文地址:https://jikaoti.com/ti/FvERFFFM
0
考研数学二
相关试题推荐
设f(x)是连续函数,F(x)是f(x)的原函数,则()
已知三元二次型XTAX经正交变换化为2y12一y22一y32,又知矩阵B满足矩阵方程[(A)*]一1BA一1=2AB+4E,且A*α=α,其中α=[1,1,一1]T,A*为A的伴随矩阵,求二次型XTBX的表达式.
设n阶矩阵(1)求A的特征值和特征向量;(2)求可逆矩阵P,使得P-1AP为对角矩阵.
求曲线xy=x2y在点(1,1)处的切线方程与法线方程.
设y=y(x)是凸的连续曲线,其上任意一点(x,y)处的曲率为,且此曲线上点(0,1)处的切线方程为y=x+1,求该曲线的方程,并求函数y=y(x)的极值。
设二维非零向量a不是二阶方阵A的特征向量.若A2α+Aα-6α=0,求A的特征值,讨论A可否对角化;
求,其中D是由圆x2+y2=4和(x+1)2+y2=1所围成的平面区域(如图1—4-2)。
设函数f(x),g(x)在[a,+∞)上二阶可导,且满足条件f(a)=g(a),f’(a)=g’(a),f"(x)>g"(x)(x>a).证明:当x>a时,f(x)>g(x).
设f(x)可导,则下列结论正确的是().
设y=y(x)是由=____________。
随机试题
折半系数可用于反映研究工具的下列哪个特征()
A.点状坏死B.桥接坏死C.溶解坏死D.嗜酸性坏死E.大片状坏死急性重型肝炎
建筑电气工程布线系统内容包括()
关于后浇带设置和处理的说法,正确的是()。
按照《中华人民共和国城市规划法》的规定,城市人口在100万以上城市的总体规划应报( )审批。
下列事项中,可以引起所有者权盗减少的有()。
小郗是初二(2)班的学生,他平时调皮捣蛋,不爱学习,扰乱课堂秩序,影响其他同学的学习,还到处说明自己是第一,“就算是倒数第一也是第一”,不仅自己不学习,还喜欢到处给别的同学起绰号,惹得很多女同学哭鼻子。班主任小李多次劝服、说理,但并不见效,后来李老师改变了
由中国倡导成立的第一个地区性国际组织是()。
下列序列中不满足堆条件的是()。
WorkshoptoFocusonGrantProcessLauraChinwillpresentaworkshopThursdayshowingnonprofitgroupshowtoapplyforNei
最新回复
(
0
)