首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数. 求P(X=1|Z=0);
admin
2019-05-11
90
问题
[2009年] 袋中有一个红球、两个黑球、三个自球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红、黑与白球个数.
求P(X=1|Z=0);
选项
答案
解一 P(Z=0)=P(两次取球都没有取到白球),该事件包括下述几种情况(考虑取球的次序):{X=1,Y=1}={第一次取到一红球,第二次取到一黑球}+{第一次取到一黑球,第二次取到一红球},共有C
1
1
C
2
1
+C
2
1
C
1
1
=4种取法; {X=2,Y=0}={第一次取到一红球,第二次取到一红球},共有C
1
1
C
1
1
=1种取法; {X=0,Y=2}={第一次取到一黑球,第二次取到一黑球},共有C
1
1
C
2
1
=4种取法. 由命题3.3.1.2知,两次取球有放回,每次取一个,取两次的样本空间Ω共含有n
m
=6
2
个样本点,故P(Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
+C
1
1
C
1
21
+C
2
1
C
2
1
)/6
2
=9/36=1/4,又 P(X=1,Z=0)=P(X=1,Y=1)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/6
2
=1/9. 故 P(X=1|Z=0)=P(X=1,Z=0)/P(Z=0)=(1/9)/(1/4)=4/9. 解二 P(X=1|Z=0)=P(在没有取到白球的情况下,取到一次红球),也可利用缩减样本空间法求得P(X=1|Z=0)=(C
1
1
C
2
1
+C
2
1
C
1
1
)/3
2
=4/9. 注:命题3.3.1.2 从n个不同元素中按照有放回且计序的要求从中取出m(m≤n)个,这时得到的样本空间设为Ω,则此样本空间Ω共含有n
m
个样本点,即从n个不同元素中取m个的允许重复的排列的种数为n
m
.
解析
转载请注明原文地址:https://jikaoti.com/ti/FrnRFFFM
0
考研数学三
相关试题推荐
设总体X的概率密度为其中θ>0是未知参数。从总体X中抽取简单随机样本X1,X2,…,Xn,记=min{X1,X2,…,Xn}。(Ⅰ)求总体X的分布函数F(x);(Ⅱ)求统计量的分布函数
已知一本书中每页印刷错误的个数X服从参数为0.2的泊松分布,写出X的概率分布,并求一页上印刷错误不多于1个的概率。
设随机变量X服从参数为1的指数分布,随机变量函数Y=1一e—X的分布函数为FY(y),则FY()=________。
设y=y(x)满足y’=x+y,且满足y(0)=1,讨论级数的收敛性.
设x3-3xy+y3=3确定隐函数y=y(x),求y=y(x)的极值.
计算dxdy,其中D为单位圆x2+y2=1所围成的第一象限的部分.
位于上半平面的上凹曲线y=y(x)过点(0,2),在该点处的切线水平,曲线上任一点(x,y)处的曲率与及1+y’2之积成反比,比例系数为k=,求y=y(x).
设A为n阶矩阵,证明:r(A*)=,其中n≥2.
一工人同时独立制造3个零件,第k个零件不合格的概率为(k=1,2,3),以随机变量X表示3个零件中不合格的零件个数,则P(X=2)=______.
讨论反常积分的敛散性,若收敛计算其值.
随机试题
试述公共政策监控的含义及内容。
Doctorssayangercanbeanextremelydamagingemotionunlessyoulearnhowto【C1】______withit.Theywarnthatangryhostilefe
A.乙醇B.纳洛酮C.乙酰胺D.维生素K1E.阿托品男性,56岁。饮工业用乙醇勾兑的白酒600ml后出现呕吐、头痛、视物不清。可用来解毒的是
《中国工程咨询业质量管理导则》指出,各类工程咨询成果的质量目标应达到的要求不包括()。
信用证项下不附有商业单据的是()。
镜面示范是教师背向学生站立进行的,与学生同方向的示范。()
射电望远镜是指观测和研究来自天体的射电波的基本设备,可以测量天体射电的强度、频谱及偏振等量。下列关于射电望远镜原理的说法错误的是:
设随机变量X与Y的分布律为且相关系数,则(X,Y)的分布律为_______
目前,即时通信系统通用的协议主要有SIMPLE协议集和______两个代表。
以下程序段的输出结果是()。intx=5;do{cout〈〈x--〈〈end1;}while(!x);
最新回复
(
0
)