首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,C∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得.
设a1<a2<…<an,且函数f(x)在[a1,an]上n阶可导,C∈[a1,an]且f(a1)=f(a2)=…=f(an)=0.证明:存在ξ∈(a1,an),使得.
admin
2017-08-31
30
问题
设a
1
<a
2
<…<a
n
,且函数f(x)在[a
1
,a
n
]上n阶可导,C∈[a
1
,a
n
]且f(a
1
)=f(a
2
)=…=f(a
n
)=0.证明:存在ξ∈(a
1
,a
n
),使得
.
选项
答案
当c=a
i
(i=1,2,…,n)时,对任意的ξ∈(a
1
,a
n
),结论成立; 设c为异于a
1
,a
2
,…,a
n
的数,不妨设a
1
<c<a
2
<…<a
n
. 令k=[*], 构造辅助函数φ(x)=f(x)一k(x-a
1
)(x—a
2
)…(x一a
n
),显然φ(x)在[a
1
,a
n
]上n阶可导,且φ(a
1
)=φ(c)=φ(a
2
)=…=φ(a
n
)=0, 由罗尔定理,存在ξ
1
(1)
∈(a
1
,c),ξ
2
(1)
∈(c,a
2
),…,ξ
n
(1)
∈(a
n-1
,a
n
),使得φ
’
(ξ
1
(1)
)=φ
’
(ξ
1
(1)
)=…=φ
’
(ξ
n
(1)
)=0,φ
’
(x)在(a
1
,a
n
)内至少有n个不同零点,重复使用罗尔定理,则φ
(n-1)
(x)在(a
1
,a
n
)内至少有两个不同零点,设为c
1
,c
2
∈(a
1
,a
n
),使得φ
(n-1)
(c
1
)=φ
’
(c
2
)=0,再由罗尔定理,存在ξ∈(c
1
,c
2
)[*](a
1
,a
n
),使得φ
(n)
(ξ)=0. 而φ
(n)
(x)=f
(n)
(x)一n!k,所以f
(n)
(ξ)=n!k,从而有f(c)=[*]f
(n)
(ξ).
解析
转载请注明原文地址:https://jikaoti.com/ti/FiVRFFFM
0
考研数学一
相关试题推荐
设D为xOy平面上的有界闭区域,z=f(x,y)在D上连续,在D内可偏导且满足若f(x,y)在D内没有零点,则f(x,y)在D上().
设随机变量X在(1,4)上服从均匀分布,当X=x(1<x<4)时,随机变量Y的联合密度函数为fY|X(y|x)=(Ⅰ)求Y的密度函数;(Ⅱ)求X,Y的相关系数;(Ⅲ)令Z=X—Y,求Z的密度函数.
当常数a取何值时,方程组无解、有无穷多个解?在有无穷多个解时,求出其通解.
设矩阵A=相似于矩阵B=(I)求a,b的值;(Ⅱ)求可逆矩阵P,使P-1AP为对角矩阵.
设n阶实对称矩阵A满足A2=E,且秩r(A+E)=k
微分方程(2xsiny+3x2y)dx+(x3+x2cosy+y2)dy=0的通解是_______.
设平面图形D由x2+y2≤2x与y≥x围成,求图形D绕直线x=2旋转一周所成的旋转体的体积.
设封闭曲面S:x2+y2+z2=R2>0),法向量向外,则__________.
以下3个命题,①若数列{un}收敛于A,则其任意子数列{uni}必定收敛于A;②若单调数列{xn}的某一子数列{xni}收敛于A,则该数列必定收敛于A;③若数列{x2n}与{x2n+1}都收敛于A,则数列{xn}必定收敛于A.正确的个数为(
设函数f(x)在x=0处连续,下列命题错误的是
随机试题
美国总统特朗普上台以来,以“美国优先”实行保护主义,先后宣布美国退出各种国际条约,给国际多边合作体制和全球治理带来新挑战。其中在2017年6月1日宣布退出()
某台系统为WindowsServer2003的服务器利用IIS实现FTP服务,默认FTP站点的属性对话框“目录安全性”设置如下图所示,则以下关于该FTP站点的描述中正确的是()。
土地的自然特性主要表现在()。
在我国,契约型基金依据()之间所签署的基金合同设立。
比较侧重定量分析的风险预警法是()
对含有1个结点的非空二叉树,采用任何一种遍历方式,其结果访问序列均相同。()
太白山上的国家二级重点保护植物有()。
用户在利用客户端邮件应用程序从邮件服务器接收邮件时通常使用的协议是______。
【B1】【B2】
Thecash-for-clunkersprogramturnedouttobeaboonforAsianautomakersandthesmallcarstheyspecializein.WhileAmerican
最新回复
(
0
)