首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
已知平面上三条直线的方程为 l1:ax+2by+3c=0, l2:bx+2cy+3a=0, l3:cx+2ay+3b=0. 试证这三条直线交于一点的充分必要条件为a+b+c=0.
admin
2018-11-20
42
问题
已知平面上三条直线的方程为
l
1
:ax+2by+3c=0,
l
2
:bx+2cy+3a=0,
l
3
:cx+2ay+3b=0.
试证这三条直线交于一点的充分必要条件为a+b+c=0.
选项
答案
l
1
,l
2
,l
3
交于一点即方程组 [*] 有唯一解,即系数矩阵的秩=增广矩阵的秩=2. [*] 则方程组系数矩阵的秩=r(A),增广矩阵的秩=r(B),于是l
1
,l
2
,l
3
交于一点[*]r(A)=r(B)=2. 必要性 由于r(B)=2,则|B|=0.计算出 |B|=一(a+b+c)(a
2
+b
2
+c
2
一ab一ac—bc) =[*](a+b+c)[(a一b)
2
+(b一c)
2
+(c一a)
2
]. a,b,c不会都相等(否则r(A)=1),即(a一b)
2
+(b—c)
2
+(c一a)
2
≠0.得a+b+c=0. 充分性 当a+b+c=0时,|B|=0,于是r(A)≤r(B)≤2.只用再证r(A)=2,就可得到 r(A)=r(B)=2. 用反证法.若r(A)<2,则A的两个列向量线性相关.不妨设第2列是第1列的λ倍,则b=λa,c=λb,a=λc.于是λ
3
a=a,λ
3
b=b,λ
3
c=c,由于a,b,c不能都为0,得λ
3
=1,即λ=1,于是a=b=c.再由a+b+c=0,得a=b=c=0,这与直线方程中未知数的系数不全为0矛盾.
解析
转载请注明原文地址:https://jikaoti.com/ti/FhIRFFFM
0
考研数学三
相关试题推荐
设α1,α2,α3线性无关,β1可由α1,α2,α3线性表示,β2不可由α1,α2,α3线性表示,对任意的常数k有().
设y=y(x)二阶可导,且y’≠0,x=x(y)是y=y(x)的反函数.(1)将x=x(y)所满足的微分方程变换为y=y(x)所满足的微分方程;(2)求变换后的微分方程满足初始条件y(0)=0,y’(0)=的解.
设二维非零向量α不是二阶方阵A的特征向量.证明α,Aα线性无关;
就k的不同取值情况,确定方程x3一3x+k=0根的个数.
设fn(x)=x+x2+…+xn(n≥2).证明方程fn(x)=1有唯一的正根xn;
已知A,B为三阶非零方阵,为齐次线性方程组BX=0的3个解向量,且AX=β3有非零解.(1)求a,b的值;(2)求BX=0的通解.
二阶常系数非齐次线性方程y"—4y’+3y=2e2x的通解为y=________。
随机试题
数字出版是指()。
关于心音分裂的叙述,错误的是
患者,男。肛门左侧皮下有一肿物5天,锨红热痛,按之应指。其诊断是( )。
A.囊心物B.囊材C.固化剂D.矫味剂E.pH调节剂吲哚美辛微囊处方中物质的作用明胶
省级人民政府可以制定严于国家排放标准的地方排放标准,但制定()大气污染物地方排放标准严于国家排放标准的,须报国务院批准。
关于建设工程合同订立程序的说法,正确的是()。
计算机病毒是可以造成计算机故障的一种()。
下列( )属于企业的流动资产。
下列三个句子,分别最可能出现在()类型的文本中。(1)我们必须相信,艾滋病群体不是一种异数,只是一种病人;不是一种例外,只是一种意外;不是一种伤疤,只是一种伤痛;不是一种耻辱,只是一种现实。(2)自我国1985年发现第一例艾滋病
Writeanessaybasedonthefollowingdrawing.inyouressay,youshoutd:1.describethedrawingbriefly,2.explainitsintend
最新回复
(
0
)