首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
设y=f(x)是区间[0,1]上的任一非负连续函数. (1)试证存在x0∈(0,1),使得在区间[0,x0]上以f(x0)为高的矩形面积,等于在[x0,1]上以y=f(x)为曲边的梯形面积. (2)又设f(x)在区间(0,1)内可导,且,证明(1)中的x0
admin
2014-07-22
43
问题
设y=f(x)是区间[0,1]上的任一非负连续函数.
(1)试证存在x
0
∈(0,1),使得在区间[0,x
0
]上以f(x
0
)为高的矩形面积,等于在[x
0
,1]上以y=f(x)为曲边的梯形面积.
(2)又设f(x)在区间(0,1)内可导,且
,证明(1)中的x
0
是唯一的.
选项
答案
(1)令ψ(x)=-x∫
x
1
f(t)dt.则ψ(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且ψ(0)=ψ(1)=0.由罗尔定理知,存在x∫
0
∈(0,1),使ψ’(x∫
0
)=0,即 ψ’(x∫
0
)=x∫
0
f(x(0)-∫
x
0
1
f(t)dt=0, 也即x
0
f(x
0
)=∫
x
0
1
f(x)dx. (2)令F(x)=xf(x)-∫
x
1
(t)dt,则 F’(x)=xf’(x)+f(z)+f(x)=2f(x)+xf’(x)>0, 即F(x)在(0,1)内严格单调增加,从而F(x)=0的点x=x
0
必唯一,故(1)中的x
0
是唯一的.
解析
[分析](1)要证的结论相当于存在x
0
∈(0,1),使x
0
f(x
0
)=∫x
0
0
f(x)dx,可考虑对辅助函数ψ(x)=xf(x)-∫x
0
0
f(x)dt在闭区间[0,1]上用连续函数的介值定理,但ψ(0)ψ(1)<0是否成立?仅由f(x)是非负连续函数无法推证,可改用微分中值定理,ψ(x)是某函数导数的结果,这只需令 ψ’(x)=xf(x)-∫
x
1
(t)dt,
然后积分得ψ(x)=∫
x
1
f(t)dt,再对其应用罗尔定理即可.
(2)唯一性一般用单调性证明,而这只需证明ψ’(x)定号即可.
[评注] 本题表面上用连续函数的介值定理,而实际上要用微分叶中值定理,其关键又存于构造合适的辅助函数.本题先令
ψ(x)=xf(x)-∫
x
1
f(t)df,
用介值定理无法证明,再改令
ψ(x)=xf(x)-∫
x
1
f(t)dt,
然后通过不定积分,得到所需辅助函数ψ(x)=-x∫
x
1
f(t)dt,这种处理技巧值得注意.
转载请注明原文地址:https://jikaoti.com/ti/FfDRFFFM
0
考研数学二
相关试题推荐
方程2xydx-(1+x2)dy=0的满足y(0)=1特解为___________.
若则k=__________.
已知则a=__________,b=___________.
设f(x)可导,且满足证明f(x)=ex.
设α,β为四维非零的正交向量,且A=αβT,则A的线性无关的特征向量个数为()。
设A为三阶矩阵,为非齐次线性方程组AX=的解,则()。
在区间[0,π]上讨论方程sin3xcosx=a(a>0)的实根的个数。
设由曲线,nπ≤x≤(n+1)π,n=1,2,3,…与x轴所围成区域绕y轴旋转所得的体积为vn,并记以其为通项的数列为{1},则下列说法正确的是()。
已知二次型f(x1,x2,x3)=(1-a)x12+(1-a)x22+2x32+2(1+a)x1x2,其二次型矩阵A满足r(ATA)=2.求a的值。
设函数f(x),g(x)在(-∞,+∞)上有定义,且满足f(x+y)=f(x)g(y)+f(y)g(x),f(0)=0,g(0)=1,f’(0)=1,g’(0)=0.证明:对一切x,f(x)均可导,且f’(x)=g(x).
随机试题
税务机关依照法定的税种、税率对某企业征税,这一行为属于()。
一般抗原抗体反应的最适温度为
A.8小时B.16小时C.24小时D.3小时E.4小时
在风险识别环境资料的收集过程中,重点收集()资料。
依据《危险化学品安全管理条例》的规定,负责危险化学品运输车辆的道路交通安全管理的政府机关是()。
下列属于高压喷射灌浆的质量检验方法的是()。
证券公司按照监管部门和证券交易所的要求,报送的自营业务信息包括()。I.自营业务账户Ⅱ.风险限额Ⅲ.资产配置Ⅳ.席位情况
简述MM资本结构理论的基本观点。
becausetheyhavenotbeenabletoreproducetheseeffectsinalaboratory,theyhavenowayofknowingwhethertheinterference
SunlightisagreatsourceofvitaminDinmostoftheworld.Yeta(an)【C1】______numberofexpertsthinkthatmanypeoplearen’t
最新回复
(
0
)