首页
外语
计算机
考研
公务员
职业资格
财经
工程
司法
医学
专升本
自考
实用职业技能
登录
考研
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y1(x),y2(x)与y3(x)是二阶非齐次线性方程 yˊˊ+p(x)yˊ+q(x)y=f(x) ① 的3个解,且 ≠常数, 则式①的通解为________.
admin
2019-03-12
48
问题
设p(x),q(x)与f(x)均为连续函数,f(x)≠0.设y
1
(x),y
2
(x)与y
3
(x)是二阶非齐次线性方程
yˊˊ+p(x)yˊ+q(x)y=f(x) ①
的3个解,且
≠常数,
则式①的通解为________.
选项
答案
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
,其中C
1
,C
2
为任意常数
解析
由非齐次线性方程的两个解,可构造出对应的齐次方程的解,再证明这样所得到的解线性无关便可.
y
1
-y
2
与y
2
-y
3
均是式①对应的线性齐次方程
yˊˊ+p(x)yˊ+q(x)y=0 ②
的两个解.今证它们线性无关.事实上,若它们线性相关,则存在两个不全为零的常数k
1
与k
2
使
k
1
(y
1
-y
2
)+k
2
(y
2
-y
3
)=0. ③
设k
1
≠0,又由题设知y
2
-y
3
≠0,于是式③可改写为
矛盾.若k
1
=0,由y
2
-y
3
≠0,故由式③推知k
2
=0矛盾.这些矛盾证得y
1
-y
2
与y
2
-y
3
线性无关.
于是
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
) ④
为式②的通解,其中C
1
,C
2
为任意常数,从而知
y=C
1
(y
1
-y
2
)+C
2
(y
2
-y
3
)+y
1
⑤
为式①的通解.
转载请注明原文地址:https://jikaoti.com/ti/FdBRFFFM
0
考研数学三
相关试题推荐
[*]
设A是4×5矩阵,α1,α2,α3,α4,α5是A的列向量组,r(α1,α2,α3,α4,α5)=3,则()正确。
A和B都是n阶矩阵.给出下列条件①A是数量矩阵.②A和B都可逆.③(A+B)2=A2+2AB+B2.④AB=cE.⑤(AB)2=A2B2.则其中可推出AB=BA的有()
证明=(n+1)an.
设计算行列式|A|.
设u=u(x,y,z)具有连续偏导数,而x=rsinφocosθ,y=rsinφsinθ,z=rcosφ.(Ⅰ)若=0,试证明u仅为φ与θ的函数;(Ⅱ)若,试证明u仅为r的函数.
已知总体X服从正态分布N(μ,σ2),X1,…,X2n是来自总体X容量为2n的简单随机样本,当σ2未知时,Y=(X2i—X2i-1)2的期望为σ2,则C=_______,DY=______.
设A,B为相互独立的随机事件,0<P(A)=P<1,且A发生B不发生与B发生A不发生的概率相等,记随机变量试求X与Y的相关系数ρ.
设A、B、C三个事件两两独立,则A、B、C相互独立的充分必要条件是()
设则有().
随机试题
下列哪项不是胃阴亏虚之胃痛的主证()(1993年第56题)
不属于室内微小气候的指标是
二巯丙醇用于解救氯磷定用于解救
产后出血是指( )。
下列关于财务杠杆的表述中,不正确的有()。
图1表示用云母片(不透水性)插入燕麦胚芽鞘的尖端的不同部位,从右边用光照射,胚芽鞘的生长状况是()。
某国有保险公司的工作人员张某故意指使他人虚报保险事故,并由自己亲自理赔,骗取保险金20万元,与他人私分。张某的行为构成()。
下面描述中错误的是()。
WhereHaveAlltheBeesGone?Scientistswhostudyinsectshavearealmysteryontheirhands.Allacrossthecountry,honey
•Readthearticlebelowaboutemployees.•Choosethebestsentencefromtheoppositepagetofilleachofthegaps.•Foreachga
最新回复
(
0
)